
Lecture 3: Exercise 4

Explanation

This exercise provides some more practice in proving that a proposed solution to a differential equation is indeed a solution. This also

establishes the general solution of the harmonic oscillator problem.

Hint

You will need the sum rule and the trigonoemtric rules of differentiation.

Answer

We begin by writing,

xHtL = A cos Ω t + B sin Ω t.

We can find the velocity by differentiating,
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or,
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or,

vHtL = -A Ω sin Ω t + B Ω cos Ω t.

We can find the acceleration,
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we can factor the Ω
2
,

aHtL = -HA cos Ω t - B sin Ω tL Ω
2

= -Ω
2

xHtL,
which is the form of Eq. (6). When t = 0,

xH0L = A cos 0 + B sin 0 = A.

and

vH0L = -A Ω sin 0 + B Ω cos 0 = B Ω.

If we label the initial position v0 and the initial velocity v0, then

x0 = A

and

v0 = B Ω.
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