Lecture 2: Exercise 2

Explanation
This is a straightforward extension of the idea of a derivative, applied to a derivative.

Hint
Apply the definition of differentiation step-by-step to the results of the previous exercise.

Answer
- \(f(t) = t^4 + 3t^3 - 12t^2 + t - 6. \)
 The first derivative was,
 \[f'(t) = 4t^3 + 9t^2 - 24t + 1. \]
 We use the power rule to get
 \[f''(t) = 12t^2 + 18t - 24. \]
\[g(x) = \sin x - \cos x. \]
The first derivative is,
\[g'(x) = \cos x + \sin x. \]
Here we again use the sum rule and the results of Eq. (2), this leads to an interesting result: the second derivative is the initial function with a sign change:
\[g''(x) = -\sin x + \cos x = -g(x). \]

\[\theta(\alpha) = e^\alpha + \alpha \ln \alpha. \]
The first derivative is,
\[\theta'(\alpha) = e^\alpha + 1 + \ln \alpha. \]
We again use the sum rule
\[\theta''(\alpha) = \frac{d}{d\alpha} e^\alpha + \frac{d}{d\alpha} 1 + \frac{d}{d\alpha} \ln \alpha. \]
We then apply Eq. (2) for the first term,
\[\theta''(\alpha) = e^\alpha + \frac{d}{d\alpha} 1 + \frac{d}{d\alpha} \ln \alpha. \]
The derivative of a constant is always zero, since a constant does not change,
\[\theta''(\alpha) = e^\alpha + \frac{d}{d\alpha} \ln \alpha. \]
We then apply Eq. 2 for the final term,
\[\theta''(\alpha) = e^\alpha + \frac{1}{\alpha}. \]

\[x(t) = \sin^2 t - \cos t. \]
The first derivative is,
\[x'(t) = 2 \sin t \cos t + \sin t. \]
Here we again apply the sum rule,
\[x''(t) = \frac{d}{dt} 2 \sin t \cos t + \frac{d}{dt} \sin t. \]
We again complete the second term, as it is simpler,
\[x''(t) = -2 \sin t \cos t + \cos t. \]
We are left with the first term, which we expand using the product rule,
\[\frac{d}{dt} 2 \sin t \cos t = \sin t \cos t \frac{d}{dt} 2 + \cos t \frac{d}{dt} \sin t + 2 \sin t \frac{d}{dt} \cos t = 0 + 2 \cos^2 t - 2 \sin^2 t = 2(\sin^2 t - \cos^2 t) = 2 \cos(2t) \]
So this gives us
\[x''(t) = 2 \cos 2t + \cos t. \]