
Lecture 1: The Nature of Classical Physics

Somewhere in Steinbeck country two tired men sit down at the side of the road. Lenny combs his beard with his fingers

and says,  “Tell  me about the laws of physics,  George.” George looks down for a  moment,  then peers at  Lenny over the

tops of his glasses. “Okay, Lenny, but just the minimum.”

What Is Classical Physics?

The  term  classical  physics  refers  to  physics  before  the  advent  of  quantum  mechanics.  Classical  physics  includes  Newton’s

equations for the motion of particles, the Maxwell-Faraday theory of electromagnetic fields,  and Einstein’s general theory

of relativity. But it is more than just specific theories of specific phenomena; it is a set of principles and rules—an underly-

ing  logic—that  governs  all  phenomena  for  which  quantum  uncertainty  is  not  important.  Those  general  rules  are  called

classical mechanics.

The job of classical mechanics is to predict the future. The great eighteenth-century physicist Pierre-Simon Laplace

laid it out in a famous quote:

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment

would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast

enough to  submit  these  data to  analysis,  it  would embrace  in  a single  formula the  movements  of  the  greatest  bodies  of  the  universe  and

those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.

In classical physics, if you know everything about a system at some instant of time, and you also know the equations that

govern how the system changes, then you can predict the future. That’s what we mean when we say that the classical laws

of physics are deterministic. If we can say the same thing, but with the past and future reversed, then the same equations tell

you everything about the past. Such a system is called reversible. 

Simple Dynamical Systems and the Space of States

A collection of objects—particles, fields, waves, or whatever—is called a system. A system that is either the entire universe

or is so isolated from everything else that it behaves as if nothing else exists is a closed system.

Exercise 1: Since the notion is so important to theoretical physics, think about what a closed system is and

speculate on whether closed systems can actually exist. What assumptions are implicit in establishing a closed

system? What is an open system?

To get an idea of what deterministic and reversible mean, we are going to begin with some extremely simple closed

systems.  They  are  much  simpler  than  the  things  we  usually  study  in  physics,  but  they  satisfy  rules  that  are  rudimentary

versions  of  the  laws  of  classical  mechanics.  We  begin  with  an  example  that  is  so  simple  it  is  trivial.  Imagine  an  abstract

object that has only one state. We could think of it as a coin glued to the table—forever showing heads. In physics jargon,

the collection of all states occupied by a system is its space of states, or, more simply, its state-space.  The state-space is not

ordinary space; it’s a mathematical set whose elements label the possible states of the system. Here the state-space consists

of a single point—namely Heads (or just H)—because the system has only one state. Predicting the future of this system is

extremely simple: Nothing ever happens and the outcome of any observation is always H.

The next simplest system has a state-space consisting of two points;  in this case we have one abstract object and

two possible states. Imagine a coin that can be either Heads or Tails (H or T).  See Figure 1.



T

H

Figure 1: The space of two states.

In  classical  mechanics  we  assume  that  systems  evolve  smoothly,  without  any  jumps  or  interruptions.  Such

behavior is said to be continuous. Obviously you cannot move between Heads and Tails smoothly. Moving, in this case,

necessarily  occurs  in  discrete  jumps.  So  let’s  assume  that  time  comes  in  discrete  steps  labeled  by  integers.  A  world

whose evolution is discrete could be called stroboscopic.

A system that changes with time is called a dynamical system. A dynamical system consists of more than a space of

states.  It  also  entails  a  law  of  motion,  or  dynamical  law.  The  dynamical  law is  a  rule  that  tells  us  the  next  state  given  the

current state.

One very simple dynamical law is that whatever the state at some instant, the next state is the same. In the case

of  .

our example, it has two possible histories: H H H H H H . . . and T T T T T T . . . .

Another  dynamical  law  dictates  that  whatever  the  current  state,  the  next  state  is  the  opposite.  We  can  make

diagrams to illustrate these two laws. Figure 2 illustrates the first law, where the arrow from H goes to H and the arrow

from T goes to T. Once again it is easy to predict the future: If you start with H, the system stays H; if you start with T,

the system stays T.
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Figure 2: A dynamical law for a two-state system.

A diagram for the second possible law is shown in Figure 3, where the arrows lead from H to T and from T to H.

You can still predict the future. For example, if you start with H the history will be H T H T H T H T H T . . . .  If you

start with T the history is T H T H T H T H . . . .
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Figure 3: Another dynamical law for a two-state system.

We can even write these dynamical laws in equation form. The variables describing a system are called its degrees of

freedom. Our coin has one degree of freedom, which we can denote by the greek letter sigma, s. Sigma has only two possi-

ble  values;  s = 1  and  s = -1,  respectively,  for  H and  T.  We  also  use  a  symbol  to  keep  track  of  the  time.  When  we  are

considering a continuous evolution in time, we can symbolize it with t .  Here we have a discrete evolution and will  use n.

The state at time n is described by the symbol sHnL, which stands for s at n.

Let’s write equations of evolution for the two laws. The first law says that no change takes place. In equation form,

s Hn + 1L = s HnL .

In other words, whatever the value of s at the nth step, it will have the same value at the next step.

The second equation of evolution has the form
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s Hn + 1L = -s HnL,
implying that the state flips during each step.

Because in each case the future behavior is completely determined by the initial state, such laws are deterministic.

All the basic laws of classical mechanics are deterministic.

To make things more interesting, let’s generalize the system by increasing the number of states. Instead of a coin,

we could use a six-sided die, where we have six possible states (see Figure 4).

Now there are a great many possible laws, and they are not so easy to describe in words—or even in equations. The

simplest way is to stick to diagrams such as Figure 5. Figure 5 says that given the numerical state of the die at time n, we

increase the state one unit at the next instant n + 1. That works fine until we get to 6, at which point the diagram tells you

to go back to 1 and repeat the pattern. Such a pattern that is repeated endlessly is called a cycle. For example, if we start with

3 then the                     .

history is 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, . . . . We'll call this pattern Dynamical Law 1.
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Figure 4: A six-state system.
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Figure 5: Dynamical Law 1.

Figure 6 shows another law, Dynamical Law 2. It looks a little messier than the last case, but it’s logically identical—

in  each  case  the  system endlessly  cycles  through the  six  possibilities.  If  we  relabel  the  states,  Dynamical  Law 2  becomes

identical to Dynamical Law 1.

Not all  laws are logically  the same.  Consider,  for  example,  the law shown in Figure 7.  Dynamical  Law 3 has two

cycles. If you start on one of them, you can’t get to the other. Nevertheless, this law is completely deterministic. Wherever

you start, the future is determined. For example, if you start at 2, the history will be 2, 6, 1, 2, 6, 1, . . .,  and you will never

get to 5. If you start at 5 the history is 5, 3, 4, 5, 3, 4, . . .,  and you will never get to 6.
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Figure 6: Dynamical Law 2.
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Figure 7: Dynamical Law 3.

Figure 8 shows Dynamical Law 4 with three cycles.
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Figure 8: Dynamical Law 4.

It would take a long time to write out all of the possible dynamical laws for a six-state system.

Exercise 2: Can you think of a general way to classify the laws that are possible for a six-state system?

Rules That Are Not Allowed: The Minus-First Law

According to the rules of classical physics, not all laws are legal. It’s not enough for a dynamical law to be deterministic; it

must also be reversible.

The  meaning  of  reversible—in  the  context  of  physics—can  be  described  a  few  different  ways.  The  most  concise

description is to say that if you reverse all the arrows, the resulting law is still deterministic. Another way, is to say the laws

are deterministic into the past as well as the future. Recall Laplace’s remark, “for such an intellect nothing would be uncertain and

the  future  just  like  the  past  would  be  present  before  its  eyes.”  Can  one  conceive  of  laws  that  are  deterministic  into  the

future, but not into the past? In other words, can we formulate irreversible laws? Indeed we can.  Consider Figure 9.
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Figure 9: A system that is irreversible.

The law of Figure 9 does tell you, wherever you are, where to go next. If you are at 1, go to 2. If at 2, go to 3. If at 3, go to

2.  There is  no ambiguity  about  the future.  But  the past  is  a  different  matter.  Suppose you are  at  2.  Where were you just

before that? You could have come from 3 or from 1. The diagram just does not tell you. Even worse, in terms of reversibil-

ity, there is no state that leads to 1; state 1 has no past. The law of Figure 9 is irreversible. It illustrates just the kind of situa-

tion that is prohibited by the principles of classical physics.

Notice that if you reverse the arrows in Figure 9 to give Figure 10, the corresponding law fails to tell you where to

go in the future.
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Figure 10: A system that is not deterministic into the future.

There is a very simple rule to tell when a diagram represents a deterministic reversible law. If every state has a single

unique arrow leading into  it,  and a  single  arrow leading out  of  it,  then it  is  a  legal  deterministic  reversible  law.  Here  is  a

slogan: There must be one arrow to tell you where you’re going and one to tell you where you came from.

The rule  that  dynamical  laws must  be deterministic  and reversible  is  so central  to classical  physics  that  we some-

times forget to mention it when teaching the subject. In fact, it doesn't even have a name. We could call it the first law, but

unfortunately there are already two first laws—Newton's and the first law of thermodynamics. There is evan a zeroth law

of thermodynamics. So we have to go back to a minus-first law to gain priority for what is undoubtedly the most fundamental

of all physical laws—the conservation of information. The conservation of information is simply the rule that every state has one

arrow in and one arrow out. It ensures that you never lose track of where you started.

The conservation of information is not a conventional conservation law. We will return to conservation laws after a

digression into systems with infinitely many states.
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