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Introduction
This  is  the  second writing  on  theoretical  physics.  I  assume that  you  have  completed  the  first

readings for theoretical, mathematical, and computational physics, and that you have a little bit

of experience with the topics I have already covered.

In this writing we will explore the idea of physical phenomena from a theoretical point of view.

We will  begin by exploring the particle theory of physical phenomena. Then, we will  examine

the concept of fields, explore more complicated theories of matter and end with a brief survey

of applied physics.

Particle theory
Underlying  idea  of  particles  is  the  notion  of  abstraction.  In  studying  a  problem,  we  abstract

away  the  size  and  shape  of  the  object  under  study.  This  allows  us  to  significantly  simplify

problems. Do we really believe that a car can move down the highway without regard to size

and shape? No, not really; air will push against the car and the details of this pushing requires a

study of the size and shape of the car and the composition and properties of the air. Thses are

not the most significant effects, and they are not required to understand motion in general; but

only  to  understand  the  detailed  motion  of  the  car  in  a  specific  situation.  If  our  goal  is  to

understand motion in all generality, we begin by the abstraction to the particle. This will be our

guiding  principle:  Use  particles  only  when  we  are  able  to  consider  motion  without  regard  to

size or shape.

Assume  we  have  decided  to  make  a  particle-based  model.  We  have  decided  that  we  do  not

need to consider the shape or size of the object under study. What do we need to do next? We

choose the physical quantities we need for our study. The first kind of physical quantity we will

consider  is  obtained  by  measurement.  When  something  is  measured,  the  first  thing  to  do  is

determine  a  unit  of  measurement  upon  which  all  measurements  will  be  based.  We  apply  the

unit,  or  a  fraction  thereof,  a  number  of  times.  We  then  say  there  are  that  many  units.  For

example, we measure the distance between two objects, or an object and an arbitrary location.

We might use meters as the unit, and then we count how many meters are between the object

and the point.  Such a  quantity  is  called a  dimensional  quantity.  Within this  category of  quantity,

there are those upon which all others are based. They are called fundamental quantities, and those

that  are  derived  from  them  are  called  derived  quantities.  For  a  particle  model,  there  are  three

absolutely  fundamental  dimensional  quantities;  length  (defined  as  the  distance  between  two

points),  time  (this  is  an undefined term,  but  we understand this  to  be the ordering of  events),

and mass (another undefined term that signifies how much matter is present in an object). The

units of length, time, and mass are determined by the system of measurement you are using.



Assume  we  have  decided  to  make  a  particle-based  model.  We  have  decided  that  we  do  not

need to consider the shape or size of the object under study. What do we need to do next? We

choose the physical quantities we need for our study. The first kind of physical quantity we will

consider  is  obtained  by  measurement.  When  something  is  measured,  the  first  thing  to  do  is

determine  a  unit  of  measurement  upon  which  all  measurements  will  be  based.  We  apply  the

unit,  or  a  fraction  thereof,  a  number  of  times.  We  then  say  there  are  that  many  units.  For

example, we measure the distance between two objects, or an object and an arbitrary location.

We might use meters as the unit, and then we count how many meters are between the object

and the point.  Such a  quantity  is  called a  dimensional  quantity.  Within this  category of  quantity,

there are those upon which all others are based. They are called fundamental quantities, and those

that  are  derived  from  them  are  called  derived  quantities.  For  a  particle  model,  there  are  three

absolutely  fundamental  dimensional  quantities;  length  (defined  as  the  distance  between  two

points),  time  (this  is  an undefined term,  but  we understand this  to  be the ordering of  events),
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System of Measuremen Length Time Mass

English System Foot HftL Second HsecL Pound HlbL
SI SystemIMetric SystemM Meter HmL Second HsecL Kilogram IkgM

CGS System Centimeter HcmL Second HsecL Gram IgmM
Derived  physical  quantities  require  combining  the  fundamental  quantities  in  some  way.  For

example, area is length times length, or length2. Here are some derived quantities.

System of Measuremen Area Volume Density HMass � VolumeL
English System Square Foot Hft2L Cubic Foot Hft3L Pound

Cubic Foot
Hlb ft-3L

SI SystemIMetric SystemM Square Meter Hm2L Cubic Meter Hm3L Kilogram

Cubic Meter
Ikg m-3M

CGS System Square

Centimeter Hcm2L Cubic

Centimeter Hcm3L
Gram

Cubic Centimeter
Igm cm-3M

The second kind of physical quantity has no units and is called a dimensionless quantity. Any ratio

of similar dimensional quantities will be dimensionless. For example, the ratio of masses of two

objects is dimensionless.

10 kg

20 kg
=

10

20

kg

kg
=

10

20
× 1 =

1

2
.

It  is  important  to  realize  that  mathematically,  a  measurement  is  a  monomial.  Recall  that  a

monomial  is  a  numerical  coefficient  multiplied  by  a  symbolic  variable.  For  example,  3 x  is  a

monomial where 3 is coefficient and x  is the variable. In measurement the numerical part is the

coefficient for the symbol of the unit.  Thus, there is no structural difference between 3 x  and

3 ft.

Once we have established the physical quantities to be used, we need to identify the arguments

of  the  theory  being  considered.  Often  these  will  be  a  list  of  formulas  that  we  can  use  in

coordination with the physical quantities. Here is a list of arguments that relate to the theory of

particles in physics.
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Argument Name Formula Explanation

77 Position x = f HtL The position is a function of time t and is the

distance, in units of length, from some

arbitrary reference point to the particle in

question.

78 Displacement D x = x - x0 The displacement is the distance traveled by

a particle. It can be calculated by subtracting

a position x by the initial position x0. This

will have units of length.

79 Velocity v = âx

ât
The velocity is the time rate of change of

position of the particle, or put another way it

is the time derivative of position. This will

have units of length × time-1.

80 Acceleration a = âv

ât
=

â2x

ât2

The acceleration is the time rate of change of

velocity of the particle, or the time

derivative of velocity. This is also the second

time derivative of position, and will have

units of length × time-2.

81 Velocity II v = Ù0
ta â t ' The velocity of a particle can also be

considered to be the time integral of the

acceleration from initial time t = 0 to some

later time t .

82 Position II x = Ù0
t v â t ' =

Ù0
t Ù0

ta â t ' â t ''

The position of a particle can be thought of

as being the time integral of velocity, or the

second time integral of the acceleration,

from some initial time t = 0 to some later

time t .

Now that  we  have  some  arguments  and  quantities,  it  is  time  to  choose  a  formulation  of  the

theory. In very broad terms, there are three mathematical formulations for any kind of theory.

The  first  is  based  upon  our  understanding  of  shape  and  distance,  this  is  called  the  geometric

formulation.  The second is  based upon an analysis  using principles  of  calculus,  this  is  called an

analytical formulation.  And the third is based on structural/logical analysis of the formulas being

considered,  this  is  called  an  algebraic  formulation.  For  this  writing,  I  choose  take  a  specific

geometric formulation that uses the notion of distance and direction called the vector kinematical

formulation. A vector is a geometrical object that has both length and direction. Anything that has

both  direction  and  length  can  be  represented  by  a  vector.  In  this  writing,  vectors  will  be

represented by a bold symbol, such as x. When writing a vector by hand, it is wise to put a half

arrow over the top of the symbol, such as x .
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Θ

r

Reference Line
a

b

Figure 1. A Vector

In Figure 1,  we can see a representation of a vector.  We draw an arrow from the base of the

vector, point a, to the head of the vector, point b. We label this vector as r. From the base we

draw a reference line, which we will use to measure the angle of the vector Θ. The length of the

vector is  denoted as r ,  or just  r .  Here are some arguments based on the vector kinematical

formulation.

Argument Name Formula Explanation

83 Position

Vector

r = Hr HtL, ΘHtLL The position vector is a list of components,

specifically the length of the postion vector,

r , as a function of time, t , and the

direction angle, Θ, also as a function of time.

84 Displacement

Vector

D r = r - r0 The displacement vector is the difference of

a given position vector subtracted by the

initial position vector, see Figure 2.

85 Velocity

Vector

v = âr

ât
The velocity vector is the time derivative of

the position vector.

86 Acceleration a = âv

ât
=

â2r

ât2

The acceleration is the time derivative of

the velocity vector. This is the second

time derivative of the position vector.

87 Velocity

Vector II

v = Ù0
ta â t ' The velocity vector of a particle can also

be considered to be the time integral of

the acceleration vector from initial time

t = 0 to some later time t .

88 Position

Vector II

r = Ù0
t v â t ' =

Ù0
t Ù0

ta â t ' â t ''

The position vector of a particle can be

thought of as being the time integral of

velocity vector, or the second time

integral of the acceleration vector

from some initial time t = 0 to some

later time t .
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Argument Name Formula Explanation
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r

Dr

r - r0

r0

Figure 2. The Displacement Vector, shown as the difference of r - r0.

We have some quantities  and arguments to develop our theory with,  and a formulation,.  The

next ingredient is an arena within which to study our phenomena. We have introduced the idea

of  a  vector  as  a  direction  and  a  length.  Now,  we  need  a  way  to  represent  these  ideas

numerically.  To  do  this  we  choose,  as  our  arena,  the  Cartesian  coordinate  system.  In  three

dimensions,  all  of  the  vectors  will  have  a  component  in  the  x-direction,  the  y-direction,  and

the z-direction, as specified in Figure 3.
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x

y

z

Figure 3. Cartesian coordinates.

The components of a vector, in Cartesian coordinates, are the distances from the origin to the

head of the vector in each direction. In effect this distance is like the shadow cast by the vector

along each coordinate axis. This gives us the following additional arguments.

Argument Name Formula Explanation

89 Position

Vector in a

Cartesian

System

r = HxHtL, yHtL, zHtLL The components of the

position vector is the

distance from the origin

to the head of the vector

in each the x, y, and z

directions.

90 Displacement

Vector in a

Cartesian System

D r = Hx - x0,

y - y0,

z - z0L
The components of the

displacement vector are the

distance intervals in each

direction.

91 Velocity

Vector in a

Cartesian

System

v = Hx ' HtL, y ' HtL, z ' HtLL The velocity vector is the

time derivative of the

position vector.

92 Acceleration

Vector in a

Cartesian

System

a = Ivx ' HtL, v y ' HtL, vz ' HtL =Hx '' HtL, y '' HtL, z '' HtLL The acceleration vector is the

time derivative of the velocity

vector.
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Argument Name Formula Explanation

89 Position

Vector in a
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System
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direction.
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Argument Name Formula Explanation

93 Velocity

Vector II in a

Cartesian

System

v = Ù0
t Iax , a y, azM â t ' The velocity vector can also be

thought of as the time integral

of the acceleration vector.

94 Position

Vector II in a

Cartesian

System

r = Ù0
t Ivx , v y, vzM â t ' =

Ù0
t Ù0

t Iax , a y, azM â t ' â t ''

The position vector can also be

thought of as the time integral of

the velocity vector, or the

second time integral of the

acceleration vector.

We are  now ready  to  study  the  phenomena of  particle  physics.  But  what  phenomena can we

study?  We  know from arguments  88  and  93  that  given  a  position  vector  whose  components

are functions of time, we can determine the velocity and acceleration vectors at any later time.

We also know that given an acceleration vector whose components are functions of time, we

can determine the velocity and position at any later time.

Let us assume that we have a falling body just above the surface of the Earth. We decide that

the  object  is  a  height  above  the  ground,  so  z0 = h,  and  it  is  dropped  at  time  t = 0,  with  no

initial  velocity,  so  vz0
= 0,  and  under  the  acceleration  due  to  the  gravity  of  the  Earth,  so

az0
= - g,  where  g = 9.8 m sec-2.  In  our  quest  for  simplicity,  we will  ignore air  resistance and

we  will  assume  that  h  is  small  enough  that  the  rotation  of  the  Earth  has  no  effect.  This

simplifies things greatly. It is important to note here that since the only acceleration present is

straight  down,  that  the  non-z  components  of  the  acceleration will  all  be  0.  We can write  our

acceleration vector as,
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the  object  is  a  height  above  the  ground,  so  z0 = h,  and  it  is  dropped  at  time  t = 0,  with  no

initial  velocity,  so  vz0
= 0,  and  under  the  acceleration  due  to  the  gravity  of  the  Earth,  so

az0
= - g,  where  g = 9.8 m sec-2.  In  our  quest  for  simplicity,  we will  ignore air  resistance and

we  will  assume  that  h  is  small  enough  that  the  rotation  of  the  Earth  has  no  effect.  This

simplifies things greatly. It is important to note here that since the only acceleration present is

straight  down,  that  the  non-z  components  of  the  acceleration will  all  be  0.  We can write  our

acceleration vector as,

a = H0, 0, - gL.
Note that we have chosen a negative sign for the acceleration. This is because the acceleration

points towards the ground. By argument 92, we can calculate the velocity,

v HtL = à a â t

So,

v HtL = à H0, 0, - gL â t

By argument 66 from [1] we rewrite this,

vz HtL = -à g â t .

By argument 67, from [1] we rewrite this,

(1)v z HtL = c - g t .

We can find the constant of integration by setting t = 0. At this time the velocity is termed the

initial velocity and given the symbol vz0
,

vz0
= c.

Substituting this result into (1) gives us,

(2)v z HtL = vz0
- g t .

So, the velocity vector is now,

(3)v HtL = H0, 0, - g tL.
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By  applying  argument  94  along  with  the  Fundamental  Theorem of  Calculus  (argument  71  in

[1]) we can calculate the position vector at any time.

r HtL = à H0, 0, - g tL â t

By applying similar arguments used in getting (1), we have,

(4)r z HtL = c -
1

2
g t2.

Once again we set t = 0, this time we have the initial position as the height, h.

h = c.

So we can substitute this into (4),

(5)r HtL = 0, 0, h -
1

2
g t2 .

Thus  we  can  predict  the  motion  of  a  particle.  We can  then  verify  these  using  Mathematica,  as

described in [2]. Begin by defining the acceleration.

a = 80, 0, -g<
80, 0, -g<

Then we define the velocity in general as,

v@tD = à a ât + v0

8v0, v0, -g t + v0<
in our situation this becomes, (using the substitution symbol /.),

v@tD �. v0 ® 0

80, 0, -g t<
This confirms our result in (3). The position is then,

r@tD = à v@tD ât + 80, 0, h<
:t v0, t v0, h -

g t2

2
+ t v0>

and for our situation,
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and for our situation,

r@tD �. v0 ® 0

:0, 0, h -

g t2

2
>

which confirms our result in (5).

Field theory
One level of complication beyond the particle viewpoint is one where a property is expressed

at every conceivable point within a region you are considering. This is how we defined a field

in  [3].  If  we  assume  that  there  is  a  field,  the  central  question  is  what  effect,  if  any,  does  this

field have on some sort of a particle within that field? Another question that arises is, "Given

specific  circumstances  generating  the  field,  what  shape  does  it  take?"  Often  a  third  question

arises,  but  for  the  most  part  field  theories  are  not  capable  of  answering  it.  What  is  the

mechanism  that  causes  the  field  to  come  into  being?  At  this  point,  we  will  consider  the

following fields: the temperature field, the gravitational field, and the electric field.

Here are some important physical quantities for the fields we will study.

Quantity Symbol SI Units cgs units

Temperature T Kelvin Kelvin

Charge q Coulomb HCL Electrostatic Unit HesuL
Force F Newton HNL

= kg m sec-2

Dyne IdynM
= gm cm sec-2

We also have two important physical constants, values that we assume never change.

Constant Symbol SI Units cgs units

Newton' s Gravitational

Constant

G 6.67 � 10-11 N m2 kg-2 6.67 � 10-8 dyn cm2 gm-2

The Coulomb Constant k 8.99 � 10 N m2 C-2 1

Here are the relevant physical arguments, along with necessary mathematical concepts.

Argument Name Formula Explanation

95 Scalar Field Φ HxL This tells us that there is a value of the scalar Φ at

every point x in the region under study. If the

space is the three dimensional Cartesian system

used above, then we would write ΦHx, y, zL and

we would call Φ a scalar function of more than one

variable.

96 Dynamical

Scalar Field

ΦHx, tL A dynamical scalar field is one that changes with

respect to the parameter t .

97 Partial

Derivative

¶ΦIx, y,zM
¶x

A partial derivative is a derivative with respect to

one variable where you hold all other variables as

constants.

It is the rate of change in a specific direction.

98 Nabla Operator Ñ This is the list of the partial derivatives with respect

to the different directions in a given coordinate

system.

In the Cartesian system Ñ= : ¶

¶x
,

¶

¶ y
,

¶

¶z
> .

99 Product of a

Scalar and a

Vector

a b This is just the product of a and each component of

b .

100 Gradient Ñ Φ The product of Φ and Ñ . In Cartesian coordinates

this is : ¶Φ

¶x
,

¶Φ

¶ y
,

¶Φ

¶z
>. This turns a scalar field into

a vector

field.

101 Inner Product r × s This is also called the dot product , and it is the sum

of the corresponding components of the vectors.

In the case of Cartesian coordinates we have,

r × s = Hrx × sxL + Ir y × s yM + Irz × szM .
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Argument Name Formula Explanation
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Argument Name Formula Explanation

102 Divergence Ñ × r The inner product of the Nabla operator and

a vector. In Cartesian coordinates this is

¶r

¶x
+ ¶r

¶ y
+ ¶r

¶z
.

The divergence converts a vector field

into a scalar field.

103 Norm of a Vector PrT This is the length of a vector. In Cartesian

coordinates this is given by the Pythagorean

theorem,

rx
2 + r y

2 + rz
2 .

104 Unit Vector r
`

= r

PrT This is a vector of length 1 pointing in the same

direction as r .

105 Basis Vectors è These are unit vectors along each coordinate

axis.

In the Cartesian system they are èx , è y ,

and èz .

106 Definition of a

Vector in terms

of basis vectors

r r = r1 è1 + r2 è2 + ... + rn èn , where the first

index represents the first coordinate axis. In

the Cartesian system this is x , the second

index is the second coordinate axis, and so on.

Thus we have a product between some

coefficients unique to the vector and the

corresponding basis vectors. This can be

generalized to Úi=1
n ri èi .

107 Einstein Summation

Convention

 When dealing with vector indices we assume

that each pair of index symbols is summed

over all possible values. For example,

ri èi = Úi=1
n ri èi = r1 è1 + r2 è2 + ... + rn èn.
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Argument Name Formula Explanation
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103 Norm of a Vector PrT This is the length of a vector. In Cartesian

coordinates this is given by the Pythagorean

theorem,

rx
2 + r y

2 + rz
2 .

104 Unit Vector r
`

= r

PrT This is a vector of length 1 pointing in the same

direction as r .
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 When dealing with vector indices we assume

that each pair of index symbols is summed

over all possible values. For example,

ri èi = Úi=1
n ri èi = r1 è1 + r2 è2 + ... + rn èn.

Argument Name Formula Explanation

108 Vector Product r � s Sometimes this is called the cross product.

In the Cartesian system we define

r = ri èi and s = si ei
`

. Then the vector

product is

r � s = Hr2 s3 - r3 s2L è1 +

Hr3 s1 - r1 s3L è2 + Hr1 s2 - r2 s1L è3 .

109 Curl Ñ � s This represents the circulation of the vector

field. In the Cartesian system we have

Ñ � s = K ¶s2

¶z
-

¶s3

¶ y
O è1 + K ¶s3

¶x
-

¶s1

¶z
O è2

+ K ¶s1

¶ y
-

¶s2

¶x
O è3 .

110 Gravitational

Force

F =
-G m1 m2

r2
This is Newton' s law of universal

gravitation. It states that the pull

exerted by the gravitation between

two masses is a constant times the

two masses, and is inversely

proportional to the square of the

distances between them.

111 Electrostatic

Force

F =
k q1 q2

r2
This is Coulomb' s law of the force of

electricity. It states that the pull, or push,

exerted by the electricity between two

charges is a constant times the two charges,

and is inversely proportional to

the square of the distances between them.

112 The Electric Field E =
k QqU

r2
The strength of the electric field at every

point. It is basically the Electrostatic force

divided by one of the charges.

113 Vector Field FHx, y, zL This tells us thar there is a value of the field F

at every point Hx, y, zL in the region under

study.
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Argument Name Formula Explanation
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F =
k q1 q2
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This is Coulomb' s law of the force of

electricity. It states that the pull, or push,

exerted by the electricity between two

charges is a constant times the two charges,

and is inversely proportional to

the square of the distances between them.

112 The Electric Field E =
k QqU

r2
The strength of the electric field at every

point. It is basically the Electrostatic force

divided by one of the charges.

113 Vector Field FHx, y, zL This tells us thar there is a value of the field F

at every point Hx, y, zL in the region under

study.

I will now demonstrate an analytical formulation of field theory, specifically that of the electric

field. Here are some arguments for the analytical formulation of the theory of the electric field.

Argument Name Formula Explanation

114 Electric Force F = q2 E The electric force

experienced by a

hypothetical particle of

charge q2 is that charge

times the electric field of

the source of the field

115 The Electric Force Due

to n charges.

F = q k q1 q2 … qn
Ir-ri M

Qr-riU3
This tells us that the

force between a

source and some charge

is proportional to the

inverse square of the

distance between the

charges and in a direct

line connecting them.

116 The Electric Field Due to

n charges.

E = k q1 q2 … qn
Ir-ri M

Qr-riU3
This tells us that the

force between a source

and a collection of

charges is proportional

to the product of the

charges and is also

inversely proportional

to the square of the

distance between the

charges and in a direct

line connecting them.
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Argument Name Formula Explanation

114 Electric Force F = q2 E The electric force

experienced by a

hypothetical particle of

charge q2 is that charge

times the electric field of

the source of the field

115 The Electric Force Due

to n charges.

F = q k q1 q2 … qn
Ir-ri M

Qr-riU3
This tells us that the

force between a

source and some charge

is proportional to the

inverse square of the

distance between the

charges and in a direct

line connecting them.

116 The Electric Field Due to

n charges.

E = k q1 q2 … qn
Ir-ri M

Qr-riU3
This tells us that the

force between a source

and a collection of

charges is proportional

to the product of the

charges and is also

inversely proportional

to the square of the

distance between the

charges and in a direct

line connecting them.

From these arguments we can calculate the forces and fields produced by collections of masses

and  charges.  Assume  that  we  have  charges  of  1  C  each  located  at  three  points,  sayH1, 1, 1L, H-1, -1, 0L , and H2, 0, 1L. What is the field produced? Using argument 116, we have,

E = k â
i=1

n

qi

Hr - riLPr - riT3

We first examine the contribution of each charge
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E1 = k
r - H1, 1, 1L

Pr - H1, 1, 1LT3
,

E2 = k
r + H1, 1, 0L

Pr + H1, 1, 0LT3
,

E3 = k
r - H2, 0, 1L

Pr - H2, 0, 1LT3
,

Now we must combine them.

E = k â
i=1

n

qi

Hr - riLPr - riT3
= k

r - H1, 1, 1L
Pr - H1, 1, 1LT3

+ k
r + H1, 1, 0L

Pr + H1, 1, 0LT3
+ k

r - H2, 0, 1L
Pr - H2, 0, 1LT3

.

We can find the field at any point by specifying the position vector. For example, at the origin,H0, 0, 0L, we have,

E = k
H0, 0, 0L - H1, 1, 1L

PH0, 0, 0L - H1, 1, 1LT3
+ k

H0, 0, 0L + H1, 1, 0L
PH0, 0, 0L + H1, 1, 0LT3

+ k
H0, 0, 0L - H2, 0, 1L

PH0, 0, 0L - H2, 0, 1LT3
,

= k
-H1, 1, 1L

H-1L2 + H-1L2 + H-1L2
3

+

k
H1, 1, 0L

H1L2 + H1L2 + H0L2
3

+ k
H2, 0, 1L

H2L2 + H0L2 + H1L2
3

,

= k
-H1, 1, 1L

3
3

+ k
H1, 1, 0L

2
3

+ k
H2, 0, 1L

5
3

,

= k
-H1, 1, 1L

3 3
+ k

H1, 1, 0L
2 2

+ k
H2, 0, 1L
5 5

,

= k
-H1, 1, 1L + H1, 1, 0L + H2, 0, 1L

3 3 2 2 5 5
,

= k
H2, 0, 2L
30 30

,
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=
k

15 30
, 0,

k

15 30
.

Theories of matter
At a fundamental level, matter is never really a point-like particle. Think about it this way, what

is  the  density  for  a  point-like  particle?  The  volume is  0,  so  the  density  must  be  infinite.  This

cannot be real.  Ultimately, we must try to explain matter as something other than a point-like

particle.

We all  know that  the  matter  we experience  is  made up of  particle-like  constituents.  Ordinary

matter  is,  in  fact,  made  up  of  atoms.  Sometimes  these  atoms  combine  to  form  molecules  and

sometimes  they  form  into  ordered  shapes  that  are  not  strictly  molecules  called  lattices.

Sometimes  these  particles  have  excess  charges  and  they  are  no  longer  called  atoms,  instead

they  are  called  ions.  Atoms  and  ions  are  themselves  made  up  of  more  fundamental  particles

(electrons,  protons,  neutrons,  etc.),  as  are  certain  kinds  of  exotic  matter.  These  topics  are

governed by  the  quantum mechanical  theory  of  matter.  Quantum theories  are  so  bizarre  that

they require an extensive rewiring of our brains through the gradual application of successively

weird ideas, it is not convenient to jump right into those ideas.

We will take the view, at least initially, that we may treat objects as collections, some number n,

of particles. It is important to realize that these objects are not to be considered as open clouds

of  particles,  instead  they  are  continuous  distributions  of  matter.  Each  particle  will  be  given  a

designation,  say,  pi ,  where  i  is  the  label  of  the  particle.  Here  we  assume  that  i  will  be  a

sequence from 1 to n.  The distance between any two particles  is  a  vector whose components

are  the  respective  distances  in  terms  of  the  coordinate  system under  consideration.  Thus  the

distance between particles 1 and 2, would be the symbol d12.

Here  are  the  simplest  physical  arguments  of  matter  theory.  We  note  that  there  is  a  new

notation used,  Ûi=1
n xi = x1 x2 ... xn, this is the product of all x. 

You can learn more about the details of this theory of matter in [6].

Argument Name Formula Explanation

117 Total Mass M = Úi=1
n mi This is just the sum of all masses in the system

under study.

118 Reduced Mass Μ =
Ûi=1

n mi

M
This allows us to think of the mass of a system

as if it were one body instead of n bodies.

119 Center of Mass R =
Úi=1

n mi ri

M
When we think of a system of n particles as a

single body, the center of mass is the place in

the system that can be considered as the

location of the reduced mass. This is the

position of that is our representation of

the system of particles.
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Argument Name Formula Explanation

117 Total Mass M = Úi=1
n mi This is just the sum of all masses in the system

under study.

118 Reduced Mass Μ =
Ûi=1

n mi

M
This allows us to think of the mass of a system

as if it were one body instead of n bodies.
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Úi=1
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M
When we think of a system of n particles as a

single body, the center of mass is the place in

the system that can be considered as the

location of the reduced mass. This is the

position of that is our representation of

the system of particles.

The first formulation of matter is to consider all  objects as continuous (unbroken) collections

of particles, as stated above. There are two special cases of this formulation. The first is where

the  distances  between  particles  are  considered  constant,  this  is  called  rigid  body  mechanics.  The

second special case is where the distances between particles are allowed to change, this is called

continuum  mechanics.  Continuum  mechanics  can  be  divided  into  the  study  of  elastic  solids

(elasticity)  and liquids and gases (fluid dynamics).  The next formulation occurs when we consider

the  presence  of  heat  in  matter,  this  is  thermodynamics.  If  we  apply  the  notion  that  heat  is  a

measure  of  the  internal  energy  of  the  collection  of  particles  within  an  object,  this  is  called

kinetic theory. If we drop the assumption of a continuous distribution and consider the object as

an average of the particles within, this is called statistical mechanics. If we consider the atoms that

comprise  matter,  this  is  quantum mechanics.  Beyond this  we have molecular  physics  and atomic

physics, the way that atoms, ions, molecules, and lattices form the matter we experience is the

subject  of  condensed  matter  physics.  When we consider  the structure  of  the atom as  a  nucleus  of

dense matter surrounded by electrons, the study of that dense nucleus is called nuclear physics. If

we  consider  electrons,  protons,  neutrons,  and  other  bizarre  particles,  then  we  enter  into

elementary particle physics. Current ideas indicate that elementary particles might be vibrating strips

of  energy  called  strings,  thus  we  have  string  theory.  Even  more  bizarre  notions  indicate  that

everything might be made up of bits of information stuck to the surface of tiny volumes, this is

called the holographic principle. The study of the physical properties of information, begun by the

engineer Claude Shannon, is called information theory. Attempting to apply information theory to

quantum systems leads us to quantum information theory and quantum computing. As we can see, the

study  of  matter  takes  us  from  the  world  of  every  day  experience  down  to  the  smallest

imaginable scales.

This  leads  us  to  ask the  question,  "How do fields  interact  with matter?"  At  its  simplest  level,

and that  can be pretty  complicated,  we have the interaction of  light  with matter,  this  is  optics.

Optics  can  be  seen  as  a  specialization  of  the  interaction  of  electromagnetic  radiation  with

matter.  When  we  consider  continuous  distributions  of  matter,  this  is  continuum  electrodynamics.

One  very  special  interplay  between  continuous  distributions  of  ionized  matter  and

electromagnetic fields is plasma physics.  When we consider quantum mechanical descriptions of

matter  and its  interaction with  fields,  we  have  quantum field  theory.  A special  area  of  interest  is

the theory of light interacting with matter at the quantum level, this is quantum optics. The most

successful theory of the interactions of fields with matter, from the point of view of a complete

theory,  is  the  general  theory  of  relativity;  describing  gravity  as  the  curvature  of  space  and  time

caused by the presence of continuous distributions of matter and energy, and how the matter

and energy move or flow within that curvature. At the present time, though it is the subject of

intense research, there is no quantum theory of gravity.
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intense research, there is no quantum theory of gravity.

Applied physical theories
The use of physics to describe the properties and phenomena of astronomical bodies is called

astrophysics.  The  study  of  stars  is  then  stellar  astrophysics,  the  matter  between  stars  is  interstellar

astrophysics, planetary systems is planetary astrophysics, the study of galaxies is galactic astrophysics, the

matter  between  galaxies  is  intergalactic  astrophysics.  The  application  of  mechanical  theories  is

called celestial mechanics. The application of field theories of gravity is called relativistic astrophysics,

and  the  application  of  electromagnetic  theory  is  called  radiative  astrophysics.  The  application  of

elementary particle physics to astronomical situations is  called high energy astrophysics.  The study

of the origins, present and future states, and the properties of the universe as a whole is called

cosmology.

The  use  of  physics  to  study  planetary  atmospheres  is,  reasonably  enough,  called  atmospheric

physics. This is divided into the study of atmospheric motions called atmospheric dynamics, heat in

the atmosphere called atmospheric thermodynamics, electromagnetic fields in the atmosphere called

atmospheric  electrodynamics,  and the  effects  of  electromagnetic  radiation in  the  atmosphere  called

atmospheric  radiation.  Most  of  these  use  the  principles  of  fluid  mechanics  as  a  basis,  since  the

atmosphere behaves like a fluid.

The application of physics to the study of living systems is called biophysics. Within this branch

of  physics  we  have  the  motions  of  biological  systems,  this  is  called  biomechanics.  The  study  of

electromagnetic  fields  in  biological  systems  is  called  bioelectromagnetics.  The  study  of  thermal

properties of biological systems, particularly molecular systems, is called bioenergetics.  The study

of the properties of biomolecules is, reasonably enough, called biomolecular physics.

Chemistry has been heavily  influenced by physics.  Depending on the exact  ratio of chemistry

to physics you will  find yourself  studying physical  chemistry  or chemical  physics.  These subjects are

further  divided  by  the  application  of  thermodynamics  to  chemistry,  called  thermochemistry,  the

application  of  quantum  mechanics  to  chemistry,  called  quantum  chemistry,  the  application  of

electrodynamics  to  chemistry,  called  electrochemistry,  and  the  application  of  dynamics  to

chemistry,  called  chemical  dynamics.  The  application  of  physics  to  the  study  of  materials  in

general is called materials science.

19



Chemistry has been heavily  influenced by physics.  Depending on the exact  ratio of chemistry

to physics you will  find yourself  studying physical  chemistry  or chemical  physics.  These subjects are

further  divided  by  the  application  of  thermodynamics  to  chemistry,  called  thermochemistry,  the

application  of  quantum  mechanics  to  chemistry,  called  quantum  chemistry,  the  application  of

electrodynamics  to  chemistry,  called  electrochemistry,  and  the  application  of  dynamics  to

chemistry,  called  chemical  dynamics.  The  application  of  physics  to  the  study  of  materials  in

general is called materials science.

Modern  technology  is,  for  the  most  part,  based  on  the  principles  of  electric  circuits  and

electronic  devices.  The  principles  of  electrodynamics  directly  apply  to  electric  and  magnetic

circuits  in  what  is  collectively  called  circuit  theory.  The  application  of  quantum  mechanics  and

condensed  matter  physics  has  brought  forth  the  subject  of  electronics.  The  instrumentation  of

electronics  has  been  applied  to  studying  electromagnetic  waves  through  the  study  of  signals

analysis. The application of mechanics has developed systems theory.

The application of mechanics to practical  matters of engineering is called, reasonably enough,

engineering mechanics. The use of mechanics, fluid mechanics, and thermodynamics to the design

of  machinery  is  called  mechanical  engineering.  The  application  of  nuclear  physics  to  modern

technology, including reactors and particle accelerators, is called nuclear engineering.

The  application  of  physics  to  geology  is  called  geophysics.  The  study  of  earthquake  and  other

waves in the Earth is called seismology. The study of the shape of the Earth is called geodesy. The

study  of  the  electromagnetic  fields  of  the  Earth  is  called  geoelectrics  and  geomagnetics.  The

application  of  physics  to  the  study  of  groundwater  systems  is  called  physical  hydrology.  The

application of physics to the study of oceans is called physical oceanography.

Things to do for Day Five
Write  down  five  functions  of  time.  Assume  these  functions  are  the  position  function,

determine the velocity and acceleration. Assume the same functions are acceleration functions,

then determine the velocity and position.

Write  down five  functions  of  time  in  a  Cartesian  coordinate  system.  Assume  these  functions

are  the  position  vectors,  determine  the  velocity  and  acceleration  vectors.  Assume  the  same

functions  are  acceleration vectors,  then determine the velocity  and position vectors.  Take the

partial time derivative of each vector.

Write down five functions of x, y, and z , treat these as scalars. Determine the gradient of each.

Write down five vector functions of x, y, and z . Take the inner product of each possible pair.

Determine  the  divergence  of  each  of  the  five  vectors.  Determine  the  norm  of  each  vector.

Take the vector product of each possible pair. Determine the curl of each vector.
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Conclusions
In this writing I have presented the three basic theories of physics; the particle theory, the field

theory, and the theory of matter. The particle theory starts us thinking about the fundamental

quantities of physics. Field theory extends these concepts to entire regions under study. Matter

theory can take either a particle or field approach.
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