
Day 3: Introduction to

Computational Physics

George E. Hrabovsky
MAST

Introduction
This is the first of a series of articles/book chapters/web pages that I intend to write about the

use of the computer algebra system (CAS) called Mathematica in support of theoretical physics.

In this series I will present physical principles and mathematical ideas as problems in

computation. This particular writing will serve as both an introduction to Mathematica and to

support both the day one writing on theoretical physics, and the day two writing on

mathematical physics. In each subsequent writing, I will explore in greater depth the

computational ideas put forth in the corresponding theoretical and mathematical physics

writing.

In its fundamental essence, this series will constitute a complete course in computational

physics using Mathematica as a programming environment. I assume that you have little

background in physics other than what you are getting from the theoretical physics writings,

and that you have had exposure to some algebra and geometry at the high school level. I

assume, also, that you have little or no experience in the use of Mathematica.

In what follows, I will begin by giving an introduction to Mathematica. I will then describe how

to use Mathematica to perform logical operations. This will be followed by a description of the

principle methods of algebraic manipulation. Then I will discuss the details of finite

differences, limits, differentiation, integration, and finally series.

A Brief Introduction to Mathematica

I am not going to instruct you how to use the operating system of your computer. I assume

you have installed Mathematica and have opened it. I am further going to assume that you have

version 7. You will see a welcome screen. The bullet-point entitled, "Quick Overview," does

very little to help the newcomer, other than providing slick views of Mathematica documents

and capabilities; it really doesn't tell you how to do much. This is not true of the bullet-point

entitled, "Learn with Guided Examples;" I find this to be really a good introduction. I will

assume that you have worked your way through this and are now ready to move on. Here are

some points to remember that will help you.

è When in doubt use the Documentation system. This consists of the Documentation

Center, the Function Navigator, and the Virtual Book. All of these can be found under

the Help Menu.

è In the Palettes menu you can find the Basic Math Assistant, the Classroom Assistant,

and the Writing Assistant. I recommend them for newcomers.

è Everything in Mathematica is considered to be an expression.

è It is a good idea to label every expression in some way so you can refer back to it later.

Logical Operations in Mathematica

Using [1] as a basis, I will begin with some logical operations.

Operation Mathematica

Command

Meaning

Negation ! expression Negates the

expression

Conjunction e1 &&

e2 &&

...

Returns True

If e1 and e2 are

true, otherwise it

returns false.

Disjunction e1 ÈÈ e2 ÈÈ ... Returns True

If e1 or e2 are

true, otherwise it

returns false.

Exclusive

Disjunction

Xor@e1, e2, ...D Returns True

If e1 or e2 are

true, but not both,

otherwise it

returns false.

Conditional ImpliesAp, qE This represents the

conditional

p Þ q .

Biconditional EquivalentAp, qE This represents the

biconditional

p � q .

ForAll ForAllAx, exprE This is the universal

quantifier.

Exists ExistsAx, exprE This is the existential

quantifier.

2

Operation Mathematica

Command

Meaning

Negation ! expression Negates the

expression

Conjunction e1 &&

e2 &&

...

Returns True

If e1 and e2 are

true, otherwise it

returns false.

Disjunction e1 ÈÈ e2 ÈÈ ... Returns True

If e1 or e2 are

true, otherwise it

returns false.

Exclusive

Disjunction

Xor@e1, e2, ...D Returns True

If e1 or e2 are

true, but not both,

otherwise it

returns false.

Conditional ImpliesAp, qE This represents the

conditional

p Þ q .

Biconditional EquivalentAp, qE This represents the

biconditional

p � q .

ForAll ForAllAx, exprE This is the universal

quantifier.

Exists ExistsAx, exprE This is the existential

quantifier.

We can use Mathematica to develop truth tables. We will first use the command

BooleanTable[logical expression,{logical variable 1},{logical variable 2}, ...]

BooleanTable@p && q, 8p<, 8q<D
88True, False<, 8False, False<<

We can put this into the form of a table by either wrapping the function in TableForm[],

3

TableForm@BooleanTable@p && q, 8p<, 8q<DD
True False

False False

or by adding //TableForm on the end

BooleanTable@p && q, 8p<, 8q<D �� TableForm

True False

False False

We can make it numerical, where 1 stands for True and 0 for False by Wrapping the command

in Boole[].

Boole@BooleanTable@p && q, 8p<, 8q<DD �� TableForm

1 0

0 0

We can even make a pictogram of the truth table by wrapping the command in ArrayPlot.

Here the black squares represent the value True and the white the value False.

4

ArrayPlot@Boole@BooleanTable@p && q, 8p<, 8q<DDD

We can make the image smaller by specifying an ImageSize->45

ArrayPlot@Boole@BooleanTable@p && q, 8p<, 8q<DD,
ImageSize ® 45D

Here is the picture of a truth table for a more complicated formula,

5

BooleanTable@8p, q, r, Hp && qL ÈÈ H! rL<D �� TableForm

True True True True

True True False True

True False True False

True False False True

False True True False

False True False True

False False True False

False False False True

Or graphically,

ArrayPlot@
Boole@BooleanTable@8p, q, r, Hp && qL ÈÈ H! rL<DD,
ImageSize ® 45D

In this way it is easy to see logical equivalence and to use truth tables to prove logical

statements.

Algebraic Manipulation in Mathematica

In addition to logical operations. Mathematica is good at algebraic manipulations, too.

Operation Mathematica

Command

Meaning

Simplify SimplifyAexprE Performs a collection of symbolic

transformations on expr and outputs

the simplest form it can find.

FullSimplify FullSimplifyAexprE Performs an extensive collection of

symbolic transformations on expr and

outputs the simplest form it can find.

Expand ExpandAexprE Expands all products and integer

powers for expr.

Factor FactorApolynomialE Factors a polynomial over the set

of integers.

Collect CollectAexpr, patE Collects terms of expr that match pat.

Together Together@rationalD Places the terms of a rational expression

over a common denominator and then

cancels factors in the result.

Apart Apart@rationalD Splits up a rational expression as a sum

of terms having minimal denominators.

Cancel Cancel@rationalD Cancels common factors in a rational

expression.

PowerExpand PowerExpandAexprE Expands all products and powers

for expr.

6

Operation Mathematica

Command

Meaning

Simplify SimplifyAexprE Performs a collection of symbolic

transformations on expr and outputs

the simplest form it can find.

FullSimplify FullSimplifyAexprE Performs an extensive collection of

symbolic transformations on expr and

outputs the simplest form it can find.

Expand ExpandAexprE Expands all products and integer

powers for expr.

Factor FactorApolynomialE Factors a polynomial over the set

of integers.

Collect CollectAexpr, patE Collects terms of expr that match pat.

Together Together@rationalD Places the terms of a rational expression

over a common denominator and then

cancels factors in the result.

Apart Apart@rationalD Splits up a rational expression as a sum

of terms having minimal denominators.

Cancel Cancel@rationalD Cancels common factors in a rational

expression.

PowerExpand PowerExpandAexprE Expands all products and powers

for expr.

First there are a few things to mention regarding Simplify. If we write,

SimplifyB x2 F
x2

you might think something went wrong. Why doesn't Mathematica return the correct value of x?

This is because Mathematica doesn't know what number system we want to use. If we say that

we want to consider only positive values of x then we write,

7

SimplifyB x2 , x > 0F
x

or even better still, if we say that x is an element of the set of real numbers, or symbolically

x Î R,

SimplifyB x2 , x Î RealsF
Abs@xD

this is the correct answer, the square root of x2 in the reals is the absolute value of x.

Most of the time Simplify is good enough. For cases involving so-called special functions it is

often best to use FullSimplify.

Gamma@x + 1D Gamma@1 - xD
Gamma@1 - xD Gamma@1 + xD

Simplify@Gamma@x + 1D Gamma@1 - xDD
Gamma@1 - xD Gamma@1 + xD

FullSimplify@Gamma@x + 1D Gamma@1 - xDD
Π x Csc@Π xD

These are only a brief listing of the most basic capabilities of Mathematica in terms of algebraic

manipulations. I invite you to explore using the Documentation system and play with it.

Finite Differences in Mathematica

In [2] I introduced the idea of a finite difference of the form,

D x = xt+n - xt .

This can be done in Mathematica by using the DifferenceDelta[function, var] for a given

function in the variable var.

DifferenceDelta@f@tD, tD �� TraditionalForm

f Ht + 1L - f HtL
We can choose a specific function, say the position of a particle at any given time t is given by

the function t2.

8

We can choose a specific function, say the position of a particle at any given time t is given by

the function t2.

DifferenceDeltaAt2, tE
1 + 2 t

We can see what an incremental increase would be by using,

DifferenceDelta@f@tD, 8t, 1, Dt<D �� TraditionalForm

f Ht + Dt L - f HtL
as we have already seen in [1]. For our specific example, we have

DifferenceDeltaAt2, 8t, 1, Dt<E �� TraditionalForm

2 t Dt + Dt 2

and we can perform the divided difference,

DifferenceDeltaAt2, 8t, 1, Dt<E
Dt

�� TraditionalForm

2 t Dt + Dt 2

Dt

we can simplify this,

DifferenceDeltaAt2, 8t, 1, Dt<E
Dt

�� Simplify ��
TraditionalForm

2 t + Dt

which is the result we got in [1].

Limits in Mathematica

In [2] I also introduce the idea of limits that I expanded in [1].

lim
x®a

f HxL = L,

is translated into the Mathematica command,

9

Limit@f@xD, x ® aD
Limit@f@xD, x ® aD

this will evaluate if we specify the function. Using the example of f HtL = t2, we have,

LimitAt2, t ® aE
a2

which is what we expected.

Differentiation in Mathematica

In [2] I introduced the derivative and expanded on that introduction in [1]. We have,

â

â t
f HtL = lim

D t®0

f Ht + D tL - f HtL
D t

,

as the definition of the derivative. In Mathematica we write, D@ f @tD, tD. For the example of

f HtL = t2, we have,

DAt2, tE
2 t

which is what we expected to get. Using this method, we can take any derivative that can be

found.

Integration in Mathematica

In [1] and [2] I introduced the indefinite and definite integrals. We can calculate both of these

in Mathematica. Here is the command for the indefinite integral,

à 2 t ât

t2

and the definite integral, in this case integrating from an initial time of 0 to a later time of a.

10

à
0

a
2 t ât

a2

which is what we expected.

Series in Mathematica

In [2] I introduced the idea of a series. Here we have,

t = D t0 + D t1 + D t2 + … + D tn = â
i=0

n

D ti .

In Mathematica we have, where we choose n = 5,

â
i=0

5

D ti

D t0 + D t1 + D t2 + D t3 + D t4 + D t5

It may seem that this is of little value and at this point it is sort of limited, but later on we will

find that this simple concept is incredibly vital.

Things to do for Day Three
Get your copy of Mathematica and play with it. Try all of the functions specified in this article.

Conclusions
The CAS Mathematica is very useful for symbolic manipulation and calculus.

References
[1] George E. Hrabovsky, (2009), Day Two: Introduction to Mathematical Physics,

MASTers Notes, www.madscitech.org/notes.html.

[2] George E. Hrabovsky, (2009), Day One: Introduction to Theoretical Physics, MASTers

Notes, www.madscitech.org/notes.html.

11

