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| ntroduction

This is the second installment of the series. Here | intend to present the ideas and
methods of proof.

L ogic and pr oof

To begin with, | will need to present the basic method of mathematics. | will try to make
this as simple as possible and still be useful. It is important to redize that in
mathematics, until an idea is applied to something concrete, ideas have no meaning.
Thus mathematics is the ultimate abstraction from reality; we speak of pure ideas
without regard to meaning. It is best to think of mathematics at this level as a kind of
structure.
To succeed in mathematics we need to consider severa different notions:
e Technical termsthat we understand to be true, but are unable to define exactly
without resorting to a circular argument (using the ideaiin its definition) are

called undefined terms. Undefined terms may be used as arguments in proofs, but
thereisthe risk that such ambigious termswill lead to unclear proofs.

e A statement that is either true of false is called a proposition. Propositions that
contain only one part is called an atomic proposition. Propositions containing
several parts are called compound propositions.

e Propositions that we assume to be true based on experience are called axioms or
postulates. Axioms and postul ates may be used as arguments in proofs.

e Propositions that we believe to be true, but have not been proved are called
conjectures. Conjectures may be used as arguments in proofs, but the prove will
be undone should a conjecture be disproved.

e A conjecture that has been proved is called atheorem. A theorem that is proven
as part of alarger proof (as an intermediate step) is called alemma. A theorem
that isaminor extension of another theorem is called a corollary. Theorems,
lemmas, and corollaries may be used as arguments in a proof.



Technical termsthat are built out of precise statements are called formal
definitions, or just definitions. Definitions may be used as arguments in a proof.

Propositional Logic

In the table below you will find definitions and examples of the operations of the logic
of propositions. It will be understood that a proposition will be symbolized as
p, g, r, S ... All of these symbols may be used in proofs.

Propositional

Symbol Meaning Eaxample
Operation
Negation - Not - p
Conjunction A This And That Y
Disjunction \/ This Or That A
s This Or That
i
Hetsive \/ But Not Both pVyg
Disjunction —
. If p, Theng
Conditional = =9

The Converse of
If p, Theng
isIf ¢, Then p.

Converse = g=p

The
Contrapositive
of If p,
Contrapositive > Then ¢ is Tg="p
If Not — ¢,
Then Not — p.

p 1f and Only If
' o g.1f and only if,
Bicondictional & . .
is sometimes

written iff.

From these symbols we can create logical formulas. The simplest formula is just the



statement of a proposition, for example p, or if we are making a statement that a
proposition p depends on another idea, say X we would write p(x).

Truth Tables

Every proposition, indeed every logical formula, is either true or false. We can create a
table of these valuesusing T for true, and F for false. When we make this array using al
possible truth values, we cal it a truth table. For example, we can create the truth table
for the negation of a proposition p:

PP
T| F
FI T

Here is the truth table for the conjunction between two propositions p and g, where we
list all possible truth values of the propositions and apply the definition of the
conjunction to determine the resulting truth value.

IAVANZAY
T[T| T
F|T| F
TIF| FE
F|F| F

Here isthe truth table for a somewhat complicated formula

plafripNg|=-r|(@ApV =~
T|T|T| T |F T
F|T|T| F | F F
T|T|[F| T | T T
FI[T|E| F | T T
TIE|T| E | F F
FIF|T| F | F F
TIE[F| E | T T
FIF|E| F | T T

If two formulas have the same truth table result, then they are said to be logicaly
equivaent. We would write p~q if p and q are logicaly equivalent. If a formula is
always true, then it is called a tautology. If a formula is always false, then it is caled a
contradiction.



Basic Set Theory

The language of modern mathematics is a combination of logic and set theory. We
understand a set to be a collection of objects of some kind. Here is atable of basic ideas
from set theory.

Idea Symbol | Meaning
Element of a Set xe X x 1s an element of the set X.

The set X is a subset of the set Y if every
Subset of a Set XcCcY

element of X isalso an element of Y.

The set X is equal to the set Y if every
Equal Sets X=Y element of X isalso an elementof Y and

every element of Y isalso an element of X.

Unequal Sets XY X and Yare not equal.
Proper Subset XcyYy XCYand X #Y.

Predicate Logic

Not all mathematical statements are propositions. Indeed, = 0, is neither true nor

X
2
fase as it is presented. It becomes a proposition only if we define x in some way. We
need to develop a couple of additional ideas.
e A symbol that represents an unspecified object that can be chosen from some
collection of objectsis called avariable.
e A statement containing one or more variables that becomes a proposition when
the variables are chosen is called a predicate.
e The statement, "For every ...," is symbolized by V, and is called the universal
guantifier. For example we can say that for al rea numbers, symbolized by R,
X% = 0. We could also write (¥ X) (x € R) X2 = 0.

e The statement, "There exists...," is symbolized by 3, and is called the existential
guantifier. For example, we can say that there exists some real number such that
X% = 0. We could also write (3 X) (x e R) X2 = 0.

Proof Methods

In what follows, we will identify the starting proposition, the given, as the hypothesis
and symbolize it by p. The conjecture to be proved, the conclusion, will be symbolized

by g.
Proof by Truth Table

This is the most rudimentary style of proof. The primary limitation is the amount of
work it requires, and the ever-expanding size of the resulting truth table. You begin by



producing the truth table for the hypothesis, and then the conclusion; if they are the
same, then they are logically equivalent, thus the hypothesisiff the conclusion.

Direct proof

Thisis at once the most effective proof and the most difficult. Here are the steps:

1. State the hypothesis.

2. Make your first argument in a sequence that will bring you to the conclusion.
3. : (this symbol indicates a variable number of steps).

4. Make you final argument.

5. State your conclusion.

Often this process is ended by writing Q.E.D. standing for qoud erat demonstratum,
meaning roughly, "Which was to be demonstrated.”

Proof by contrapositive

The contrapositive and the conditional are logically equivaent, thus if we can prove the
contrapositive, we have proven the conditional. We begin this method of proof by
stating the conclusion.

1. State the conclusion.

2. Write the negation of the conclusion.

3. Make your first argument in a sequence that will bring you to the hypothesis.

4. :.

5. Make your final argument.

6. State the negation of the hypothesis.

7. Make the argument that by the contrapositive the conditional must be true. Q.E.D.

Reductio ad absurdum (RAA)

| gave Galileo's example of this type of proof in the Day One Theoretical Physics Article.
1. State the hypothesis.

. Assume that the hypothesis implies the negation of the conclusion

. Make your first argument in a sequence that will bring you to the conclusion.

. Make you final argument.

. Show that thisimplies that the negation of the conclusion is both true and false,
such asituation is always fal se.

7. Since this a contradiction, the negation of the conclusion cannot be true.

8. The conclusion must then be true. Q.E.D.

O UA WN

Mathematical induction



This requires knowing that the natural numbersare 1, 2, 3, and so on.

1. State the hypothesis.

2. Show that the conclusion is true for the case of avariable equal to one. Thisis
caled the basis step.

3. Write your conclusion for the variable having an arbitrary value for some
unspecified natural number n.

4. Show that if the conclusion is true for n that the conclusion is also true for n+ 1.
Thisis called the inductive step. It is possible to reverse 3 and 4, to assume the
conclusion true for n+ 1 and then show that it istrue for n.

5. By the Principle of Mathematical Induction the conclusion must be true for all
natural numbers (or for all casesthat can be listed by the natural numbers). Q.E.D.
Proof by cases - divide and conquer

The final style of proof is given in the next two sections:
1. State the hypothesis.
2. Show that the conclusion requires a finite number of cases.
3. Prove each case independently.
4. Thusthe conclusion istrue for each possible case. Q.E.D.

Proof by cases - Bootstrap

We continue with the second method for case analysis:
1. State the hypothesis.
2. Show that the conclusion requires a finite number of cases.
3. Provethefirst case.
4. Prove each case based on the proof of the previous case.
5. Thusthe conclusion is true for each case. Q.E.D.

Counterexamples

Up to now we have considered how to construct a mathematical proof. We can aso
disprove a conjecture by showing a single case where the conclusion is not true. Such an
instance is called a counterexample of the conjecture.

L ogical Operationsin Mathematica

Using [1] asabasis, | will begin with some logical operations.

Operation | Mathematica Command Explanation

Negation ! expression Negates the expression.



el && Returns True if el and e2 are
Conjunction e2 && true, otherwise it returns
False.
Returns True if el or e2 are
Disjunction el || e2 ] .. true, otherwise it returns
False.

. Returns True if either el or
Exclusive
o . Xotlel, €2, ...] e2 are true, but not both,
Disjunction o
otherwise it returns false.

. . This represents the
Conditional Implies[p, q] ..
conditional p = g.

. iy . This represents the
Biconditional Equivalent[p, q] ) ..
biconditional p & g.

ForAll ForAll[x, expt] This 1§ the universal
quantifier.

) ) This is the existential
Exists Exists[x, expr] .
quantifier.

We can use Mathematica to develop truth tables. We will first use the command
BooleanTable[logical expression,{logical variable 1} ,{logical variable 2}, ...]

Bool eanTabl e[p &&q, {p}, {q}]
{{True, Fal se}, {Fal se, Fal se}}
We can put thisinto the form of atable by either wrapping the function in TableForm[],

Tabl eFor m[Bool eanTabl e[p &&q, {p}, {9}]1]

True Fal se
Fal se Fal se

or by adding //TableForm on the end

Bool eanTabl e[p & q, {p}, {q}] // Tabl eForm

True Fal se
Fal se Fal se

We can make it numerical, where 1 stands for True and O for False by Wrapping the



command in Boolg] ].

Bool e [Bool eanTabl e[p &&q, {p}, {q}]1] // Tabl eForm

10
00

We can even make a pictogram of the truth table by wrapping the command in
ArrayPlot. Here the black squares represent the value True and the white the value False.

ArrayPl ot [Bool e[Bool eanTabl e[p &&q, {p}, {9}11]

We can make the image smaller by specifying an ImageSize->45

ArrayPl ot [Bool e [Bool eanTabl e[p &&q, {p}, {q}11,
| mageSi ze » 45]

Here isthe picture of atruth table for a more complicated formula,



Bool eanTabl e[{p, g, r, (P&&Q) || ('r)}] //
Tabl eForm

True True True True
True True False True
True False True False
True False False True
Fal se True True False
Fal se True False True
Fal se Fal se True False
Fal se Fal se Fal se True

Or graphically,

ArrayPl ot [
Bool e[Bool eanTabl e[{p, g, r, (p&&q) || (!r)}11,
| mageSi ze » 45]

In this way it is easy to see logical equivalence and to use truth tables to prove logical
statements.

Arguments by logic

The following are arguments of logic. It is a useful exercise to prove each of these,
either by writing their truth tables, or by other methods.

Argument | Name Formula Explanation

) Definition of a (p \ = p)= | A proposition and its negation

Contradiction F cannot both be true.

Definition of

The negation of a negation of a
2 a Double (= p)=p

Negative proposition is the proposition.
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Law of the Either something is true or it
3 Excluded (pV = p is not. This is similar to
Middle argument 1.
4 Definition of (p * 9= This is true when you replace
Commutation (g p) « with either A or V.
. (pxq)* .
. Definition of — This is true when you replace
r s
Associativity ? % with either A or V.
(g%7)
(p=q9= . .
6 Law of the (= o= This is the basis for proof by
Contrapositive 7 » contrapositive.
(5 + This is true when you replace
. DeMorgan's ) s % with either A or V and
Laws 7 o with either V or A,
=pe=9) .
respectively.
This is true when you replace
. prlgen = o
o Definition of a ( ) s with either A or Vand
% g)o
Distribution r*q o with either V or A,
(pr) .
respectively.

Proof: Here is an example of a proof by truth table, we will prove Argument 1,

Contradiction.
2= p|(p A\ = p)|Contradiction
T| F F F
F[ T F F

thus(p A = p)~Contradiction, which proves argument 1. QED.

Here is an example of how to discover a proof. We will prove Argument 2, Double
Negative. We need to show that the double negative is equivaent to the initia
proposition.
1. We start by stating that the negation of a proposition always has the opposite
truth value of a proposition, thus we can write
q=-0p.

2. The negation of g will then have the opposite truth value from g, we can write,
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r=-4a.

3. Since aproposition is either true or false, when a negation is false the starting
proposition is true.

4. Whenr isfalse, then g must be true, this also means that p isfalse.
5. Similarly when r istrue q isfase, and thus pistrue.
6. Therefore we see that r and p are the same.

7. Sincer isthe double negative of p, then we can say that the double negative of
any proposition is the same as the proposition. This has been a proof by cases.
QED.

Argumentsinvolving limits

In [5] we explored the idea of alimit. We begin with the formal definition of the limit:
Definition 1 The Limit: The limit of some function f (x) as x approaches some specific
value a is symbolized by

lim f(x) = L.

X—a

so long as we make f (x) get as close to L as we want such that x is sufficiently close to
a and so long as x never really becomes a.

While this definition is adequate, it will eventually be replaced by a more accurate one.

Argument | Name Formula Explanation
Constant
Multiple lima _’“( [)] The limit of a constant multiple
9 Rule for . l;{ e of a function is the constant
Limits £ multiple of the limit.
Sum and limysy [f(x) £
10 Difference 2] = The limit of a sum 1s the sum of
Rule limy—, f(x) £ | the limits.
for Limits limyc—q g(x)
limy g [f(x)-
Product =
roduc ) 4l The limit of a product is the
11 Rule for limy—., f(X) . ..
o . product of the limits.
Limits limy, g(
x)
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limyxog [
tient =
Quotien ,f(x)/g(x)] The limit of a quotient is the
12 Rule for (limy—, f(x))/ . ..
o . quotient of the limits.
Limits (limy—, g(
x))
. The limit of a
3 Power Rule fimaa [j; ;ﬂ power is the power
X =
for Limits llimyesy £()]” of the limit.
limy—, (f (x)7
14 Root Rule (1/n) = The limit of an nth root is the
for Limits (limy— 4 7 th root of the limit.
Flpt/
Constant ] The limit of a constant is that
15 . lim,, () =¢
Limit Rule constant.
Limiting )
16 limy—, (x) =a
Value
Power ofa lim,, (X”) =
17 Limiting
gﬂ
Value
Limit of 2.1 lim,,, p(x) =
18 Polynomial Ha)
a
p(x)
J(x) = g(x)
Limit = For all x on an interval [z, /]
19 )
Theorem 1 lim,—, f(x) < |wherea <c<b.
lim,, g(X)
If
<
S J ny) N This also requires lim,—,, f(x)
eeze <
2 qu (=26 | Jpn
Theorem then

limy, A(x) =
L

andthate < ¢ < b.
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This is written if and only if we

o Infinite lim,—, f( can make f(x) arbitrarily large
Limit x) = oo | forall values of x sufficiently
closetoa solongasx # a.
This is written if and only if we
Negative lim,—, f( can make f(x) arbitrarily large
22 Infinite x) = and negative for all values of x
Limit — 00 sufficiently close to « so long as
X F a.
) Infinity and zero can be thought
Limits at limy st ¢/ .y =
23 ) ) of as inverses.
Infinity x'=0
The infinite limit
. of a polynomial
. hrnx_&oo P( 1
Infinite ) Px)=a, x"+a, 1 x"
xX) =
24 Polynomial ) + ... +q
. limystoo @y
Limit W is the same as the infinite limit of
the highest order term of the
polynomial.
) A function is continuous, ot
. lim,, f ( . .
Continuous smooth, if at any point « the
25 . x) = . o .
Functions 1@ limit of the function is the limit
a
at that point.
If £ (x) is
continuous
on an
interval [a, b] s
, andif 7 s a This is a special way of saying
Intermediate number such that ) :
that every continuous function
26 Value f(a) = .
will take on all values between
Theorem (IVT) n = f(b),

then there exists
some number ¢
such that,
a<c¢<b,
and f (¢) = n.

f(a)and f (b).

Here is a proof of Argument 15, The Constant Multiple Rule for Limits. For this we
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immediately require a more precise definition of the limit than the one we have above.
We need to define the absolute val ue,

IXI—{X x=0 L
" l-x x<0° ()

So, we redefine the limit,

Definition 1a: The Limit. For some function f (x) then

lim f(x) = L.

if(Ve)(e>0(3 d) (>0
[f(X)—-L|<e€

whenever
O<|x—a <é.

Proof of Argument 15: To accomplish this proof we need to show that the limit
of the constant multiple of an arbitrary function is the same as the constant multiple of
the limit of the function. It seems the most straightforward way to do thisis to compute
both expressions and show they are equivalent.

1. Let us begin with the hypothesis, limy_,5 [c f(X)].
2. By the definition we have some value e > O such that

|lcf(X-L| <€ (2
whenever thereisavaue § > 0 such that,
O<|x-a| <.

3. If wethink about this for awhile we realize that in this situation the limit L is the
product of adifferent limit M and the constant c, by the definition of the limit.

4. Thisgives us anice clue as to how to complete the proof; we need to show that
(2)isequivalentto |c| |f(X) - L | <e
5. We begin by rewriting (2)
|cf(x)—cM | <e
6. By argument 35, (the distributive property) we can rewrite this,
lc| | T -M| <e 3

7. S0, by (1) we havelimy_,5 [c f(X)] = M, and by (3) wehaveclimy,5 f(X) = M.
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Thuswe havelimy_ 5 [c f(X)] = climy,a f(X), QED.

Argumentsinvolving differentiation

In [5] | introduced the idea of differential calculus. We will present the following
definition of the derivative of afunction:

Definition 2 The Derivative: The derivative of a function, f (t) isgiven as,

dx dx AT . 1
—=—=f")=D¢x=lim —— = lim —(f(t + At) — f(1)).
dt dt At-0 At At-0 At
Argument | Name Formula Explanation
7 Differentiability A function is differentiable at
some point « if /' (a) exists.
. — A function is
Differentiability . .
28 differentiable on an

interval [a, b] if f'(#) exists for
onan Interval )
every pointa < ¢ < b.

If f(7) is differentiable at
29 Continuity t = a,then f (¢)is continuous

at £ = a.

Slope of a :
The slope of aline tangent to a

30 Tangent ) o
Line pointa on f(#) is f'(a).
Constant
31 Derivative if =0 The derivative of a constantis 0.
Rule
Constant d cF() = The derivative of a constant
32 Multiple dt multiple is the constant
Rule cddt () multiple of the derivative.
3 Sum Rul [/ + gO]'= | The derivative of a sum is the
Hr e S0 £ g'(#) | sum of the derivatives.
34 Power Rule Sy
/@) - g®)]'=
35 Product Rule (@) g+

2@ f()
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d p—
0 L/ (D) /4] =
36 Quotient Rule V- g
0 f))/
g7
This allows you to change
) dx _ dx variables in differentiation. It is
37 Chain Rule 2o dtldy | o
J @ a direct application of argument
11, above.

I will now prove Argument 32, The Constant Multiple Rule. We begin with the
hypothesis.

1. Assume that we have i c f(t).

cft+At)—cf(t)
At '
clft+An - )]
At '
4. Then by Argument 36, The Constant Multiple Rule for Limits, we now have,

d . fa+Aat)— f(b)
Lcf)=climyig—mmm.
" t) At-0 At

2. By Definition 2, this gives us, %c f(t) =limaiso

3. Factoring this we have, i cf) =Ilimaiso

5. Thisis equivaent, by the definition of the derivative, to ¢ i f (t), the conclusion.

a — 4
6. Thus . c f(t)=c . f(t), QED.

Argumentsinvolving integration

In [5] | introduced the idea of an integral. Given any function f (t), its antiderivative is
the function F(t) such that,

F'(t) = ().

The most general antiderivative is called the indefinite integral and is written,
ff(t)clt = F(t) + c.

Here are some arguments involving integration.

Argument | Name Formula Explanation
Constant f £t = This allows us to factor any
38 Multiple P ff(l‘) Yy multiplicative constants out of
Rule the integrand.
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. IRGEFG)
um
39 Rule dr= The integral of the sum is the
t
Hee [f(dr+ | sumof the integrals.
Integrals
[er)d?
Power f "dr=
40 Rule for 7 (n+ Heren + —1.
Integrals N+e
Constant f/é ds=
4 Rule for . -
Integrals Pre
f (4 o Here we undt'erstand that
o v = g(#). This
Substitution (»d¢ ] o
42 Rul is an application
e =
" [10d of the Chain Rule,
Jwdv (Argument 37) above.
In essence this defines an
integral over
b
Fundamental fﬂ fdr= an interval from «
43 Theorem f f(b)dr— | tob.Suchanintegral is called a
of Calculus f fa)dt definite integral. The values @ and
b are called the /imits of
integration.
Interchanging fla D di = We can interchange
44 the Limits L 4 the limits of
of ntegration _Jf; St integration by changing the sign.
The Same
45 “F(Hdr=0
Limits f“ S0
b
Splitting fﬂ fndr= We can split the limits of
46 the Limits fﬂ fdr+ integration so
of ntegration f/’f(f) d? longasa <¢<b.
47 Equivalent fﬂb f)dr=
Integrals fa b ) dx
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Constant
b _
48 Rule for fa cdt =
Definite c-(b—a)
Integrals

| will prove Argument 38, the Constant Multiple Rule for Integration. Here we begin
with the definition of the integral.

1. By the definition of anintegral [ f (t) dt = F(t) + c.

. Thisimplies[F(t) + c]' = f(1).

. By argument 32 we can multiply this by an constant k, kK [F(t) + c]' = k f(t).
. We can apply thisto step 1 and get, [k f(t)dt = kF(t) + kc.

. By argument xx, The Distributive Property, the right hand side of this becomes,
kF@t) + kc=k[F(t) + c].
6. By the definition of integration thisis equivalent to kff(t)dt = K[F(t) + c].

7. By step 5then [k f(t)dt = k [f(t) dt. QED.

o A WDN

Argumentsinvolving sequences and series

In [5] | introduced the idea of a series. Here | formalize that. | will make three
definitions.

Definition 3 Sequences: A sequence is a list, in a specific order, of n terms. A
sequenceiscalled infiniteif n —» co. A sequence may be writeen,

{sn}=1{s1, &2, S5, -y S}
Definition 4 Limit of a Sequence: An infinite sequence {s(n)} hasa limit

limsy,=c

N—oo
if, V p>0, AN suchthats— p<sy<c+pforn>N.
Definition 5 Series: A seriesisthe sum of the first n terms of a sequence.
n
Za =+ +a+..+ay
i=0

If thisis the sum of an infinite sequence, then it is called an infinite series.
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(o]
Za; =aj+aji1+...+aq+ ..
i=j

Definition 6 Sequence of Partial Sums. Associated with every infinite series is the
sum of the first n terms of the infinite series

n
sn:Za- —ap+aj+ay+..+ay

i=0

Thisis called the sequence of partial sums {s,}.

Argument | Name Formula Explanation
Convergent A sequence that has a limit is
¥ sequence said to converge.
Divergent A sequence that does not
>0 sequence converge is said to diverge.
Rel c The arguments relating limits
51 i © .evzlllnce © are applicable to the limits of
imit theorems sequences,
A sequence is bounded above if
B every value of the sequence is
22 Bounded above = less than some value of B. B is
called the uwpper bound.
A sequence is bounded below if
. B every value of the sequence is
>3 Bounded below "= more than some value of B. B is
called the Jower bound.
M Every subsequent term of the
54 ono;one ) S = Syt sequence is less than, or equal
FONCECEastS to, the previous term.
Monotone Every subsequent term of the
55 strictly Sn < Syl sequence is less than the
increasing previous term.
M Every subsequent term of the
56 Onojcone . Sp = Syaq sequence is greater than, or
romineleasing equal to, the previous term.
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Monotone Every subsequent term of the
57 strictly Sn > Sp+l sequence is greater than the
decreasing previous term.
An infinite sequence that is
' bounded from above and is
im0 5, = ) L
Convergence of B mononotic nondecreasing is
. ¢ = . . . .
58 monotonic . convergent. Likewise an infinite
lim,e0 5, = .
sequences > B sequence that is bounded from
¢ =
above and is monotonic from
below is convergent.
If a set of numbers is bounded
above, then there is a least
Least upper -
59 PP _ uppet bound B such that all
bound axiom
other upper bounds are greater
than or equal to B.
If a set of numbers is bounded
Greatest below, then there is a greatest
60 lower bound lower bound B such that all
theorem other lower bounds are less
than or equal to B.
61 Proper A sequence that tends to infinity
. §p = £oo .. S
divergence or negative infinity is divergent.
o A sequences that diverges,
Oscillating ) ) )
62 but is not propetrly divergent, is
sequences )
called oscillatory.
Monotonic
sequences _ _
A monotonic sequence either
63 and . .
converges or is proper divergent.
convergence /
divergence
If we can define a new infinite
sequence from a given sequence
64 Subsequence 9 8 4

by ignoring some terms we have

a subsequence.
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If {s,} is a sequence with a limit

6 Limitof a ¢ (or +00), thenany
subsequence subsequence of {s,} will have
a limit of ¢ (or % 00).
] A sequence with two
Oscillatory
06 subsequences that have
subsequences : L .
different limits is oscillatory.
Limit of a If a subsequence of the
subsequence monotonic
67 of a sequence {s,} hasa
monotonic limit ¢ (or % o0) then {s,} also
sequence has a limit of ¢ (or % c0).
Given {s,},
Yex>0,
63 Cauchy AN, Far out in the sequence,
condition |5 —$»| <€ |all terms are close together.
when
m, n > N.
If a sequence converges then it
satistied the Cauchy condition,
69 Cauchy criterion also if the sequence satisfies the
Cauchy condition it is
convergent.
An infinite series converges if
Convergence of ] ]
70 ] ] ) its sequence of partial sums
infinite series i
is bounded.
Proper s o
_ An infinite series is proper
divergence : -
71 divergent if its sequence of
of an ] )
] ] ) partial sums is unbounded.
infinite series
o An infinite series is oscillating if
Oscillating ) . .
72 its sequence of partial sums is

infinite series

oscillatory.
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Adding or removing zero terms

73 Zero terms to a series has no effect on the
series.
by + by + .t
h,é +
Tl t
Y2t . .
The effect of replacing terms in
weta,;= . . .
an infinite series is to add a
Replacement of a| +ay+ ..+ '
4 B ) constant to the nth partial sum
terms in an an . .
) ] ] of the original series. In general
infinite seties +[(o) + by + .+ '
) this leaves the convergence of
b
/ﬁ( the original series unchanged.
- ﬂl + ﬂz
+ ..+
a)] =
sp+d
Sp =
aptay+..+
., Given that an infinite series
n>
P converges and has the sum §,
7= Ip+1 . . .
75 - then adding a series to it creates
2t i
_ yeo . another series that converges
- =1 ﬂﬂ+/ .
4 " with the sum s, + #,.
S=

Syt 1y
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76

Fora
convergent
series 221 4;
with
sum £ and
we have a
monotinic
strictly
increasing
sequence
{4} of positive
integers. Now
we

also have

[1 :tll +ﬂ2+‘..
+a
by
2 41t
+
1 +2

.t a;z

y=a +

n t”_1+1
a
t”_1+2

+ ...+ Kllt”

then the series
o .

202 by s

convergent

and has sum 4.

The converse of this is not true.
We can also say that if,

after parenthesis are inserted

into a given series, the new

series diverges, then the original

series diverges.

77

Multiplication
of a series

by a constant

A=32 4

If

Vi =4day,
then
cA=220a
= 2,2021 day
=d 32 a.
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78

Sum of seties

A= 2521 a;
B= Zj; ;
IfVY £d¢ =
ap +
be,
then A + B=
22021 k=
2/2021 (ﬂ/e +
be)
= 2,2021 ap +
221 by

79

Cauchy
critetion for

infinite series

- )
=1 a; 18

convergent if

and only if,

Ye > 0,
AN,

such that
| ayt1 t aps2
+ ...+
ay| <€
when 7 >
n>N

Thi is Argument 69 rewritten

for infinite series.

80

Dominated

Series

o ;
A series 22 a; with real or
complex terms is dominated by
the series 22 i with

nonnegative
real terms so long

as |dl'| SijiZj.
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A series 22, a; with
nonegative terms and is
dominated by the convergent
series, 22, b; that has the

81 sum B, is also convergent

and has the sum .4 < B. Also,
Z?zl a; = A=<

Zf:1 a; t Z;O:Z'H hj'

Thingstodo for Day Three

Continue building your library of references. Definitely begin with references [3] and

[4].

Practice Problems from Day One

e Thefirst problem was to write out three functions of t whose properties you
understand. For this, | will choose:

f(t)=t-12

gt = (4 + v°,
and
xt
h(t) = o
e The second problem was to write out each of the functions as a divided difference
asin (6) in[1]. Recall that (6) in[1] is,
Af@) f@+At) - @)
X) = = :

At At
thus the three functions become,

ft+ At — f(t) (Et+AD3—(t+At)2-t3+12
At - At

f=t-t*>
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1
A—t(t3+3t2At+3tAt2+ A -2 —2tAt- AP -t3+1?)

1

At(3t2At+3tAt2+ AP —2tAt— At?)

=3t2+3tAt+ At? -2t — At

gt +AD - gh) @A+ t+AD-(4+1°
At B At

g =@ +1t°>

gt +AD - gh) @A+ t+AD -4 +1°
At B At

g =@4+1d=

1 3 2 2 2
E(t +3tPAt+12t°+ 3tAt® +48t+ 24t At+48At+
12At% + AP +64-t3-12t° - 48t - 64)

1 2 2 2 3
E(3t At+3tAt° + 24tAt+48At+12At° +A )

=3t2+3tAt +241 +48 +12At +At2.

and,
ht + At) — h(t) Xx({t+At)2—xt2
At B At

xt
ht) = — = (xt t3=xt?2>

x[t+At) 2 - t7?]
At

= =

X/(t+A1)?— x/t?
At

[t2x—x(t+A1?] /t2(t+ A1)
At

= =

= =
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1
Zﬂﬁx—4@+2tAt+A@ﬂ/Fa+A02
X2tAt + At?) /t2(t+A1)>

= =
At

X2t + At)
C2t+AD2

e Thethird problem isto take the derivative of each functionint. Recall that the

derivativeis,
f(t+At) — f(t
fr@) = lim ( ) (W
At-0 At
So,
@t + A = f(b) _ X )
f('t)y=lim = lim 3t°+3tAt+ At® -2t — At
At-0 At At-0
= 3t2+3t(0) + (02 -2t — (0)
= 3t2-2t.
C gt + At - g
") = lim
g( ) At-0 At
:Jm%3@+3tAt+2H+48+12At+A@
t—
= 3t°+3t(0)+24t +48 +12(0) + (0)?
= 3t2+24t +48.
and
~ h(t+ At) = ht) X2t + AY)
h('t) = lim = lim ——
At-0 At At-0 t2(t+ A t)?

X(2t + 0)
t2(t + 0)2
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Practice Problems

Choose one of the arguments by logic and prove it is true. A good project is to prove
them all.

Conclusions

| have presented a fairly good reference for beginning to explore the mathematics used
in physics. Thisisagood beginning.
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Appendix: Arguments from Basic Mathematics

| am assuming that you will not need explanation for these. | include them for
completeness and future reference.

Arguments by algebraic manipulation

In this section | will assume that you are familiar with the basic operations of arithmetic:
addition, subtraction, multiplication, division, exponentiation, and root-taking. | will
introduce a number of technical terms that will be understood without fomal definition.

e |n algebra, the set of objects that you can choose variables from will be a set of
numbers.

e Thefirst set of numbersisthe natural numbers, the counting numbers, and is
symbolized N.

e The second set of numbers are the whole numbers, the natural numbers and zero,
denoted W.

e Thethird set of numbersisthe integers, the whole numbers and the negative of
the natural numbers, denoted Z.

e Thefourth set of numbersisthe rational numbers, fractions whose denominator
and numerator are both integers, denoted Q.

e Thefifth set of numbersisthe real numbers, the rational numbers and all
irrational numbers, denoted R.

e The sixth set of numbersis the imaginary numbers, these are multiples of
i=v-1.

e The seventh set of numbersis the complex numbers, the set of all real and
imaginary numbers of theformz=x + i1y, wherexand y arereal. Thisset is
denoted C.

e A predicatein algebrais frequently called an expression.

e Thevalue of avariableis provided when avariableis replaced with a specific
choice of object.

e Finding the value of an expression is called evaluation of the expression. You
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must be careful to be consistent in your choise of values for the variables, that is
the same variable in multiple terms must all have the same values.

When you evaluate an expression you begin by evaluating whatever terms are
within grouping symbols (parentheses, brackets, etc.). Then you evaluate all
exponents. Then you evaluate all products and quotients. And then you evaluate
all sums and differences.

A polynomial expression is an expression whose terms are integer powers of the
variables. The highest integer power of the polynomial is called the degree of the
polynonial. Thus, x? + x + 1 is an example of a polynomial of second degree with
three terms.

A polynomia of only onetermis caled amonomial.

Any constant factor of aterm in apolynomial is called a coefficient. For example,
3 x2 has a coefficient of 3.

Like termsin an expression can be combined by adding, or subtracting,
coefficients as necessary. Thus, 3x° —5x? = (3-5) x% = —2X°.

A polynomial of degree 1iscaled linear.

A polynomial of degree 2 is called quadratic.

A polynomial of degree 3iscalled cubic.

A polynomial of degree 4 is called quartic.

A polynomial of degree5iscalled quintic.

A rational expression isthe quotient of two polynomials.

An eguation is an expression that states that two or more terms, or combinations
of terms, have the same value. These will have an equal sign relating the relavant
values, =.

The solution of an equation is what you get when you evaluate that equation. A
polynomial equation of a given degree will be called by the name of the
polynomial of the same degree, (linear, quadratic, cubic, quartic, and quintic).
There are five relationships between values that are not equality: two values can
be greater than >, less than <, greater than or equal to >, lessthan or equal to <,
and not equal to #. Any expression involving these are called inequalities. A
polynomial inequality of a given degree will be called by the name of the
polynomial of the same degree, (linear, quadratic, cubic, quartic, and quintic).

Argument | Name Formula Explanation
Multiplying fractions involves
- Fraction i ) j = first multiplying the
Multiplicaton (a-¢)/(b-d) |denominators and then the

numerators.
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Fraction

Dividing fractions is just

a . ¢ _ ad o .. .
83 Division e mut{plymg' the d1v1den'd 'b}
the inversion of the divisor.
Common factors in the
denominator and numetrator
84 Cancellation f =1 can be replaced by 1,
term — by — term. Thus,
atl _ 1+ L and not 1.
4L
Adding and b d
. (a-d £
85 Subtracting
Fractions b-a)l
(b-d)
7 a+
We can add like terms be adding
78T heir coefficient
a6 Adding Terms b= their coefficients,
unlike terms
(n + m) -
cannot be added.
a+ b
Adding . .
i Subtraction and adding
Opposite a+(=b) = .
87 . opposite sign
Signed a—b .
integers are equal.
Integers
Adding (—a) +
88 Same Signed (=b) =
Integers —(a + b)
Multiplying
% Opposite a-(=b) =
Signed —(a - b)
Integers
Multiplying
%0 Qpposite a-b=
Signed (—=a)-(=b)
Integers
Double
91 —(—a) = a

Negative
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0 Multplying a P We can always multiply a term
Term by 1 b by 1.
93 Multiplying gt gt
Exponents
Dividing M 3
94 — =a""
Exponents a”
95 Reciprocal =1
96 Negative Power a"=1/a"
Power of
97 (a-b)Y'=a"- b
a Product
Power of o "
98 . =%
a Quotient b b
99 Rewriting 4 _
Division b
Multiplying )
a- b=
100 Same Signed
s (~a)- (1)
Integers
-hH"™ (1 =
Product (a A) (1/7)
101 £ Root a™~(1/n)-
of Roots (1)
(a/b)"
102 Quotient E\l /n) =
of Roots (a™(1/n)/
(b (1] n)
Power a"(1/n) This also means thatif 7 = #
103
of a Root =@ A/M™ | then we have Va = |a]|.
Rootasa
104 | Fractional A ) = an
Power
The General . b Here we replace * by either
a =
105 Commutative + or -.
b * a

Property
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The General Here we replace * by either
o (axb) = ¢c=
106 Associative + or -.
ax (b * ¢)
Property
o a-(b+r¢)= This is also the basis for
Distributive . i )
107 (a-b)+ factoring, in which case we
Property
(a- ¢ reverse the process.
(a + b)-(c +
d) =
108 N[.ultipl.ying (a-0c)+
Binomials (a-d)+
(b-vc)+
(b - d)

Proof of argument 82, Fraction Multiplication.
1. Assume that we haverational numbersx=a/bandy =c/d.
2. By the definition of arational number, t/s, wheresand t are integers,
x.y=2.¢
Y=b'a
. Thisisequivaent to the expression for integers (a+ b) - (c+d).
. We can rewritethis(a‘ l)-(c‘ l).
b d
. By the associative property of multiplication we can write this, (a- c) - (% . %)
. By the definition of division we can rewritethis, (a-c) = (b-d).
. By the definition of rational numbers we have, %.

a c_ ac
Thus, g b.d,QED.

This has been adirect proof.

© N oA~ W

Algebraic Manipulation in Mathematica

In addition to logical operations. Mathematica is good at algebraic manipulations, too.

Operation Mathematica Command Explanation

Performs a sequence of
symbolic
Simplify Simplify[expr] transformations on

expr and outputs the

simplest form it can find.



Performs an extensive
sequence of symbolic
FullSimplify | FullSimplify[expr] transformations on expr
and outputs the simplest

form it can find.

Expand Expand[expr] Expands all products and
integer powers for expr.

Factor Factot[polynomial] Factors a Polynomlal over
the set of integers.

Collect Collect[expr, pat] Collects terms of expr that
match pat.

Places the terms

of a rational
) expression over a common
Together Together[rational] P .
denominator and then
cancels and factors in the

result.

Splits up a rational

expression as a sum of

Apart Apart[rational] . o
terms having minimal
denominators.
Cancels common

Cancel Cancel[rational] factorsina

rational expression.

PowerExpand | PowerExpand[expr] Expandsall products and

powers for expr.

First there are afew things to mention regarding Simplify. If we write,

Sin‘plify[\/x_z]
\/XT

you might think something went wrong. Why doesn't Mathematica return the correct
value of x? This is because Mathematica doesn't know what number system we want to
use. If we say that we want to consider only positive values of x then we write,
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Si n‘plify[\/xz, x>0]

X

or even better still, if we say that x is an element of the set of real numbers, or
symbolically x € R,

Si n’plify[\/xz, X € Reals]
Abs [X]

thisis the correct answer, the square root of x2 in the reals is the absol ute value of x.
Most of the time Simplify is good enough. For cases involving so-called special
functionsit is often best to use FullSimplify.

Gamma[x + 1] Gamma[l - x]
Gamma [l -x] Ganma 1 + X ]

Sinplify[Gamma[x + 1] Gamma[l - x]]
Gmma [l -x] Gamma [l + X]

Full Sinmplify[Gamma[x +1] Gamma[l - x]]

X Csc[mX]

These are only a brief listing of the most basic capabilities of Mathematica in terms of
algebraic manipulations. | invite you to explore the Documentation system and play
with it.

Argumentsrelating to logarithms

Expanding on the ideas from the last section, we can define exponentiation and root-
taking as inverse operations, similar to addition and subtraction. Thus we can define a
root,

Definiiton 1: Root of an exponent: Given an exponent, a", its nth root is a. This is

denoted a = \/n an.
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We can similary define the logarithm.

Definiiton 2: Logarithm of an exponent: Given an exponent, a", its base-a logarithm
isn. Thisis denoted log, a" = n.

Argument | Name Formula Explanation
. log,(a0) = . .
Logarithm The logarithm of a product is
109 log, a+ .
of a product the sum of the logarithms.
log, b
log,(7) =" | The logarithm of
Logarithm of (b ) © .Ogaljl m O_ 2
110 . log a — quotient is the difference of
a quotient " hel h
log” b the Ogarlt ms.
” Logatithm log, a" =
of a power nlog  a




