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Introduction
This  is  the  second  installment  of  the  series.  Here  I  intend  to  present  the  ideas  and
methods of proof.

Logic and proof
To begin with, I will need to present the basic method of mathematics. I will try to make
this  as  simple  as  possible  and  still  be  useful.  It  is  important  to  realize  that  in
mathematics,  until  an  idea  is  applied  to  something  concrete,  ideas  have  no  meaning.
Thus  mathematics  is  the  ultimate  abstraction  from  reality;  we  speak  of  pure  ideas
without  regard  to  meaning.  It  is  best  to  think of  mathematics  at  this  level  as  a  kind of
structure.

To succeed in mathematics we need to consider several different notions:

è Technical terms that we understand to be true, but are unable to define exactly 
without resorting to a circular argument (using the idea in its definition) are 
called undefined terms. Undefined terms may be used as arguments in proofs, but 
there is the risk that such ambigious terms will lead to unclear proofs.

è A statement that is either true of false is called a proposition. Propositions that 
contain only one part is called an atomic proposition. Propositions containing 
several parts are called compound propositions.

è Propositions that we assume to be true based on experience are called axioms or 
postulates. Axioms and postulates may be used as arguments in proofs.

è Propositions that we believe to be true, but have not been proved are called 
conjectures. Conjectures may be used as arguments in proofs, but the prove will 
be undone should a conjecture be disproved.

è A conjecture that has been proved is called a theorem. A theorem that is proven 
as part of a larger proof (as an intermediate step) is called a lemma. A theorem 
that is a minor extension of another theorem is called a corollary. Theorems, 
lemmas, and corollaries may be used as arguments in a proof.

è Technical terms that are built out of precise statements are called formal 
definitions, or just definitions. Definitions may be used as arguments in a proof.



è

Technical terms that are built out of precise statements are called formal 
definitions, or just definitions. Definitions may be used as arguments in a proof.

Propositional Logic

In the table below you will find definitions and examples of the operations of the logic
of  propositions.  It  will  be  understood  that  a  proposition  will  be  symbolized  as
p, q, r, s, .... All of these symbols may be used in proofs.

Propositional

Operation
Symbol Meaning Eaxample

Negation Ø Not Ø p

Conjunction í This And That p ì q

Disjunction ë This Or That p ê q

Exclusive

Disjunction
�

This Or That

But Not Both p � q

Conditional Þ
If p , Then q

p�q

Converse Þ

The Converse of

If p , Then q

is If q , Then p .
q� p

Contrapositive Þ

The

Contrapositive

of If p ,

Then q is

If Not - q ,

Then Not - p .

Ø q�Ø p

Bicondictional �

p If and Only If

q . If and only if,

is sometimes

written iff.

p � q

From  these  symbols  we  can  create  logical  formulas.  The  simplest  formula  is  just  the
statement  of  a  proposition,  for  example  p,  or  if  we  are  making  a  statement  that  a

proposition p depends on another idea, say x we would write pHxL.
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From  these  symbols  we  can  create  logical  formulas.  The  simplest  formula  is  just  the
statement  of  a  proposition,  for  example  p,  or  if  we  are  making  a  statement  that  a

proposition p depends on another idea, say x we would write pHxL.
Truth Tables

Every proposition, indeed every logical formula, is either true or false. We can create a
table of these values using T for true, and F for false. When we make this array using all
possible truth values, we call it a truth table. For example, we can create the truth table
for the negation of a proposition p:

p Ø p

T F

F T

Here is the truth table for the conjunction between two propositions p and q, where we

list  all  possible  truth  values  of  the  propositions  and  apply  the  definition  of  the
conjunction to determine the resulting truth value.

p q p ì q

T T T

F T F

T F F

F F F

Here is the truth table for a somewhat complicated formula:

p q r p ì q Ø r H p ì qL ê Ø r

T T T T F T

F T T F F F

T T F T T T

F T F F T T

T F T F F F

F F T F F F

T F F F T T

F F F F T T

If  two  formulas  have  the  same  truth  table  result,  then  they  are  said  to  be  logically
equivalent.  We  would  write  p~q  if  p  and  q  are  logically  equivalent.  If  a  formula  is

always true, then it is called a tautology. If a formula is always false, then it is called a
contradiction.

Basic Set Theory
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Basic Set Theory

The  language  of  modern  mathematics  is  a  combination  of  logic  and  set  theory.  We
understand a set to be a collection of objects of some kind. Here is a table of basic ideas
from set theory.

Idea Symbol Meaning

Element of a Set x Î X x is an element of the set X .  

Subset of a Set X Í Y
The set X is a subset of the set Y if every

element of X is also an element of Y .

Equal Sets X = Y

The set X is equal to the set Y if every

element of X is also an element of Y and

every element of Y is also an element of X .

Unequal Sets X ¹ Y X  and Yare not equal.           

Proper Subset X Ì Y X Í Y and X ¹ Y .

Predicate Logic

Not all  mathematical  statements  are  propositions.  Indeed,  x

2
= 0,  is  neither  true  nor

false  as  it  is  presented.  It  becomes a  proposition only if  we define x  in  some way.  We
need to develop a couple of additional ideas.

è A symbol that represents an unspecified object that can be chosen from some 
collection of objects is called a variable.

è A statement containing one or more variables that becomes a proposition when 
the variables are chosen is called a predicate.

è The statement, "For every ...," is symbolized by ", and is called the universal 
quantifier. For example we can say that for all real numbers, symbolized by R, 
x2 ³ 0. We could also write H" xL Hx Î RL x2 ³ 0.

è The statement, "There exists...," is symbolized by $, and is called the existential 
quantifier. For example, we can say that there exists some real number such that 
x2 ³ 0. We could also write H$ xL Hx Î RL x2 ³ 0.

Proof Methods

In  what  follows,  we  will  identify  the  starting  proposition,  the  given,  as  the  hypothesis
and symbolize it by p. The conjecture to be proved, the conclusion, will be symbolized

by q.

Proof by Truth Table

This  is  the  most  rudimentary  style  of  proof.  The  primary  limitation  is  the  amount  of
work it  requires, and the ever-expanding size of the resulting truth table. You begin by
producing  the  truth  table  for  the  hypothesis,  and  then  the  conclusion;  if  they  are  the
same, then they are logically equivalent, thus the hypothesis iff the conclusion.
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This  is  the  most  rudimentary  style  of  proof.  The  primary  limitation  is  the  amount  of
work it  requires, and the ever-expanding size of the resulting truth table. You begin by
producing  the  truth  table  for  the  hypothesis,  and  then  the  conclusion;  if  they  are  the
same, then they are logically equivalent, thus the hypothesis iff the conclusion.

Direct proof

This is at once the most effective proof and the most difficult. Here are the steps:

1. State the hypothesis.
2. Make your first argument in a sequence that will bring you to the conclusion.
3. » (this symbol indicates a variable number of steps).
4. Make you final argument.
5. State your conclusion.

Often  this  process  is  ended  by  writing  Q.E.D.  standing  for  qoud  erat  demonstratum,
meaning roughly, "Which was to be demonstrated."

Proof by contrapositive

The contrapositive and the conditional are logically equivalent, thus if we can prove the
contrapositive,  we  have  proven  the  conditional.  We  begin  this  method  of  proof  by
stating the conclusion.

1. State the conclusion.
2. Write the negation of the conclusion.
3. Make your first argument in a sequence that will bring you to the hypothesis.
4. ».
5. Make your final argument.
6. State the negation of the hypothesis.
7. Make the argument that by the contrapositive the conditional must be true. Q.E.D.

Reductio ad absurdum (RAA)

I gave Galileo's example of this type of proof in the Day One Theoretical Physics Article.

1. State the hypothesis.
2. Assume that the hypothesis implies the negation of the conclusion
3. Make your first argument in a sequence that will bring you to the conclusion.
4. ».
5. Make you final argument.
6. Show that this implies that the negation of the conclusion is both true and false, 

such a situation is always false.
7. Since this a contradiction, the negation of the conclusion cannot be true.
8. The conclusion must then be true. Q.E.D.

Mathematical induction

This requires knowing that the natural numbers are 1, 2, 3, and so on.
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This requires knowing that the natural numbers are 1, 2, 3, and so on.

1. State the hypothesis.
2. Show that the conclusion is true for the case of a variable equal to one. This is 

called the basis step.
3. Write your conclusion for the variable having an arbitrary value for some 

unspecified natural number n.
4. Show that if the conclusion is true for n that the conclusion is also true for n + 1. 

This is called the inductive step. It is possible to reverse 3 and 4, to assume the 
conclusion true for n + 1 and then show that it is true for n.

5. By the Principle of Mathematical Induction the conclusion must be true for all 
natural numbers (or for all cases that can be listed by the natural numbers). Q.E.D.

Proof by cases - divide and conquer

The final style of proof is given in the next two sections:

1. State the hypothesis.
2. Show that the conclusion requires a finite number of cases.
3. Prove each case independently.
4. Thus the conclusion is true for each possible case. Q.E.D.

Proof by cases - Bootstrap

We continue with the second method for case analysis:

1. State the hypothesis.
2. Show that the conclusion requires a finite number of cases.
3. Prove the first case.
4. Prove each case based on the proof of the previous case.
5. Thus the conclusion is true for each case. Q.E.D.

Counterexamples

Up  to  now  we  have  considered  how  to  construct  a  mathematical  proof.  We  can  also
disprove a conjecture by showing a single case where the conclusion is not true. Such an
instance is called a counterexample of the conjecture.

Logical Operations in Mathematica
Using [1] as a basis, I will begin with some logical operations. 

Operation Mathematica Command Explanation

Negation ! expression Negates the expression.
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Conjunction

e1 &&

e2 &&

...

Returns True if e1 and e2 are

true, otherwise it returns

False.

Disjunction e1 ÈÈ e2 ÈÈ ...

Returns True if e1 or e2 are

true, otherwise it returns

False.

Exclusive

Disjunction
Xor@e1, e2, ...D Returns True if either e1 or

e2 are true, but not both,

otherwise it returns false.

Conditional Implies@p, qD This represents the

conditional p Þ q .

Biconditional Equivalent@p, qD This represents the

biconditional p � q .

ForAll ForAll@x, exprD This is the universal

quantifier.

Exists Exists@x, exprD This is the existential

quantifier.

We  can  use  Mathematica  to  develop  truth  tables.  We  will  first  use  the  command
BooleanTable[logical expression,{logical variable 1},{logical variable 2}, ...]

BooleanTable@p && q, 8p<, 8q<D
88True, False<, 8False, False<<

We can put this into the form of a table by either wrapping the function in TableForm[],

TableForm@BooleanTable@p && q, 8p<, 8q<DD
True False
False False

or by adding //TableForm on the end

BooleanTable@p && q, 8p<, 8q<D �� TableForm

True False
False False

We  can  make  it  numerical,  where  1  stands  for  True  and  0  for  False  by  Wrapping  the
command in Boole[ ].
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We  can  make  it  numerical,  where  1  stands  for  True  and  0  for  False  by  Wrapping  the
command in Boole[ ].

Boole@BooleanTable@p && q, 8p<, 8q<DD �� TableForm

1 0
0 0

We  can  even  make  a  pictogram  of  the  truth  table  by  wrapping  the  command  in
ArrayPlot. Here the black squares represent the value True and the white the value False.

ArrayPlot@Boole@BooleanTable@p && q, 8p<, 8q<DDD

We can make the image smaller by specifying an ImageSize->45

ArrayPlot@Boole@BooleanTable@p && q, 8p<, 8q<DD,

ImageSize ® 45D

Here is the picture of a truth table for a more complicated formula,
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BooleanTable@8p, q, r, Hp && qL ÈÈ H! rL<D ��
TableForm

True True True True
True True False True
True False True False
True False False True
False True True False
False True False True
False False True False
False False False True

Or graphically,

ArrayPlot@
Boole@BooleanTable@8p, q, r, Hp && qL ÈÈ H! rL<DD,

ImageSize ® 45D

In this way it  is  easy to see logical equivalence and to use truth tables to prove logical
statements.

Arguments by logic
The  following  are  arguments  of  logic.  It  is  a  useful  exercise  to  prove  each  of  these,
either by writing their truth tables, or by other methods.

Argument Name Formula Explanation

1
Definition of a

Contradiction

H p ì Ø pL �

F

A proposition and its negation

cannot both be true.

2

Definition of

a Double

Negative

Ø IØ pM� p
The negation of a negation of a

proposition is the proposition.
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3

Law of the

Excluded

Middle

H p ê Ø pL Either something is true or it

is not. This is similar to

argument 1.

4
Definition of

Commutation

H p * qL�Hq * pL This is true when you replace

* with either ß or Þ .

5
Definition of

Associativity

H p * qL *

r � p *Hq * r L
This is true when you replace

* with either ß or Þ .

6
Law of the

Contrapositive

H p�qL�HØ q�

Ø pL
This is the basis for proof by

contrapositive.

7
DeMorgan' s

Laws

Ø H p *

qL�HØ p ë Ø qL
This is true when you replace

* with either ß or Þ and

ë with either Þ or ß,

respectively.

8
Definition of a

Distribution

p * Hqër L�H p * qLëH p * r L
This is true when you replace

* with either ß or Þ and

ë with either Þ or ß,

respectively.

Proof:  Here  is  an  example  of  a  proof  by  truth  table,  we  will  prove  Argument  1,
Contradiction.

p Ø p H p ì Ø pL Contradiction

T F F F

F T F F

thus H p ì Ø pL~Contradiction, which proves argument 1. QED.

Here  is  an  example  of  how  to  discover  a  proof.  We  will  prove  Argument  2,  Double
Negative.  We  need  to  show  that  the  double  negative  is  equivalent  to  the  initial
proposition.

1. We start by stating that the negation of a proposition always has the opposite 
truth value of a proposition, thus we can write

q = Ø p.

2. The negation of q will then have the opposite truth value from q, we can write,
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r = Ø q.

3. Since a proposition is either true or false, when a negation is false the starting 
proposition is true. 

4. When r is false, then q must be true, this also means that p is false. 

5. Similarly when r is true q is false, and thus p is true. 

6. Therefore we see that r and p are the same. 

7. Since r is the double negative of p, then we can say that the double negative of 
any proposition is the same as the proposition. This has been a proof by cases. 
QED.

Arguments involving limits
In [5] we explored the idea of a limit. We begin with the formal definition of the limit:

Definition 1 The Limit: The limit of some function f HxL as x approaches some specific

value a is symbolized by

lim
x®a

f HxL = L.

so long as we make f HxL get as close to L as we want such that x is sufficiently close to

a and so long as x never really becomes a.

While this definition is adequate, it will eventually be replaced by a more accurate one.

Argument Name Formula Explanation

9

Constant

Multiple

Rule for

Limits

limx®a @
c f HxLD =

c limx®a

f HxL
The limit of a constant multiple

of a function is the constant

multiple of the limit.

10

Sum and

Difference

Rule

for Limits

limx®a @ f HxL ±

gHxLD =

limx®a f HxL ±

limx®a gHxL
The limit of a sum is the sum of

the limits.

11

Product

Rule for

Limits

limx®a @ f HxL ×

gHxLD =

limx®a f HxL ×

limx®a gH
xL

The limit of a product is the

product of the limits.
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12

Quotient

Rule for

Limits

limx®a @
f HxL � gHxLD =Hlimx®a f HxLL �Hlimx®a gH

xLL
The limit of a quotient is the

quotient of the limits.

13
Power Rule

for Limits

limx®a @ f H
xLDn =@limx®a f HxLDn

The limit of a

power is the power

of the limit.

14
Root Rule

for Limits

limx®a H f HxLL^H1 �nL =Hlimx®a

f HxLL1�n
The limit of an nth root is the

n th root of the limit.

15
Constant

Limit Rule
limx®a HcL = c

The limit of a constant is that

constant.

16
Limiting

Value
limx®a HxL = a

17

Power of a

Limiting

Value

limx®a HxnL =

an

18

Limit of a

Polynomial

p HxL
limx®a pHxL =

pHaL

19
Limit

Theorem 1

f HxL £ g HxL 
Þ
limx®c f HxL £

limx®c gHxL
For all x on an interval @a, bD
where a £ c £ b .

20
Squeeze

Theorem

If 

f HxL £

h HxL £ gHxL,  
then
limx®c hHxL =

L

This also requires limx®c f HxL
= limx®c gHxL = L ,

and that a £ c £ b .
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21
Infinite

Limit

limx®a f H
xL = ¥

This is written if and only if we

can make f HxL arbitrarily large

for all values of x sufficiently

close to a so long as x ¹ a .

22

Negative

Infinite

Limit

limx®a f H
xL =

-¥

This is written if and only if we

can make f HxL arbitrarily large

and negative for all values of x

sufficiently close to a so long as

x ¹ a .

23
Limits at

Infinity

limx®±¥ c �
xr = 0

Infinity and zero can be thought

of as inverses.

24

Infinite

Polynomial

Limit

limx®±¥ pH
xL =

limx®±¥ an

xn

The infinite limit

of a polynomial

pHxL = an xn + an-1 xn-1

+ ... + a0

is the same as the infinite limit of

the highest order term of the

polynomial.

25
Continuous

Functions

limx®a f H
xL =

f HaL
A function is continuous, or

smooth, if at any point a the

limit of the function is the limit

at that point.

26

Intermediate

Value

Theorem HIVTL

If f HxL is

continuous

on an

interval Aa, b E ,

and if n is a

number such that

f HaL £

n £ f HbL,
then there exists

some number c

such that,

a < c < b ,

and f HcL = n .

This is a special way of saying

that every continuous function

will take on all values between

f HaL and f HbL .

Here  is  a  proof  of  Argument  15,  The  Constant  Multiple  Rule  for  Limits.  For  this  we
immediately require a more precise definition of the limit than the one we have above.
We need to define the absolute value,
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Here  is  a  proof  of  Argument  15,  The  Constant  Multiple  Rule  for  Limits.  For  this  we
immediately require a more precise definition of the limit than the one we have above.
We need to define the absolute value,

(1) x¤ = ; x x ³ 0

- x x < 0
.

So, we redefine the limit,

Definition 1a: The Limit. For some function f HxL then

lim
x®a

f HxL = L.

if H" ΕL HΕ > 0L H$ ∆L H∆ > 0L
  f HxL - L¤ < Ε

whenever

0 <  x - a¤ < ∆.

Proof of Argument 15: To accomplish this proof we need to show that the limit
of the constant multiple of an arbitrary function is the same as the constant multiple of
the limit of the function. It seems the most straightforward way to do this is to compute
both expressions and show they are equivalent.

1. Let us begin with the hypothesis, limx®a @c f HxLD.
2. By the definition we have some value Ε > 0 such that

(2)c f HxL - L < Ε

whenever there is a value ∆ > 0 such that,

0 < x - a < ∆.

3. If we think about this for a while we realize that in this situation the limit L is the 
product of a different limit M  and the constant c, by the definition of the limit.

4. This gives us a nice clue as to how to complete the proof; we need to show that 
(2) is equivalent to c f HxL - L < Ε. 

5. We begin by rewriting (2)

c f HxL - c M < Ε.

6. By argument 35, (the distributive property) we can rewrite this,

(3)c f HxL - M < Ε.

7. So, by (1) we have limx®a @c f HxLD = M , and by (3) we have c limx®a f HxL = M .

8. Thus we have limx®a @c f HxLD = c limx®a f HxL, QED.
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8.

Thus we have limx®a @c f HxLD = c limx®a f HxL, QED.

Arguments involving differentiation
In  [5]  I  introduced  the  idea  of  differential  calculus.  We  will  present  the  following
definition of the derivative of a function:

Definition 2 The Derivative: The derivative of a function, f HtL is given as,

â x

â t
=

d x

d t
= f ' HtL = Dt x = lim

D t®0

D f HtL
D t

= lim
D t®0

1

D t
H f Ht + D tL - f HtLL.

Argument Name Formula Explanation

27 Differentiability
A function is differentiable at

some point a if f ' HaL exists.

28

Differentiability

on an Interval

A function is

differentiable on an

interval [a, bD if f ' HtL exists for

every point a £ t £ b .

29 Continuity

If f HtL is differentiable at

t = a , then f HtL is continuous

at t = a .

30

Slope of a

Tangent

Line

The slope of a line tangent to a

point a on f HtL is f ' HaL .

31

Constant

Derivative

Rule

â

ât
c = 0 The derivative of a constant is 0.

32

Constant

Multiple

Rule

â

ât
c f HtL =

c â � â t f HtL
The derivative of a constant

multiple is the constant

multiple of the derivative.

33 Sum Rule
@ f HtL ± gHtLD ' =

f ' HtL ± g ' HtL The derivative of a sum is the

sum of the derivatives.

34 Power Rule
â

ât
tn = n tn-1

35 Product Rule

@ f HtL × gHtLD ' =

f ' HtL gHtL +

g ' HtL f HtL
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36 Quotient Rule

â

ât
@ f HtL � gHtLD =

H f ' HtL gHtL - g 'HtL f HtLL �
gHtL2

37 Chain Rule
âx

â y
=

âx

ât
â t � â y

This allows you to change

variables in differentiation. It is

a direct application of argument

11, above.

I  will  now  prove  Argument  32,  The  Constant  Multiple  Rule.  We  begin  with  the
hypothesis.

1. Assume that we have â

ât
c f HtL.

2. By Definition 2, this gives us, â

ât
c f HtL = limD t®0

c f Ht + D tL - c f HtL
D t

.

3. Factoring this we have, â

ât
c f HtL = limD t®0

c @ f Ht + D tL - f HtLD
D t

.

4. Then by Argument 36, The Constant Multiple Rule for Limits, we now have, 
â

ât
c f HtL = c limD t®0

f Ht + D tL - f HtL
D t

.

5. This is equivalent, by the definition of the derivative, to c â

ât
f HtL, the conclusion.

6. Thus â

ât
c f HtL=c â

ât
f HtL, QED.

Arguments involving integration
In [5] I introduced the idea of an integral. Given any function f HtL,  its antiderivative  is

the function FHtL  such that,

F ' HtL = f HtL.
The most general antiderivative is called the indefinite integral and is written,

à f HtL â t = FHtL + c.

Here are some arguments involving integration.

Argument Name Formula Explanation

38

Constant

Multiple

Rule

Ù k f HtL â t =

k Ù f HtL â t

This allows us to factor any

multiplicative constants out of

the integrand.
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39

Sum

Rule for

Integrals

Ù f HtL ± gHtL
â t =Ù f HtL â t ±

Ù gHtL â t

The integral of the sum is the

sum of the integrals.

40

Power

Rule for

Integrals

Ù tn â t =

tn+1 � Hn +

1L + c

Here n ¹ -1.

41

Constant

Rule for

Integrals

Ù k â t =

k t + c

42
Substitution

Rule

Ù f H gHtLL g 'HtL â t

=Ù f HvL â v

Here we understand that

v = gHtL . This

is an application

of the Chain Rule,HArgument 37L above.

43

Fundamental

Theorem

of Calculus

Ùa
b f HtL â t =

Ù f HbL â t -

Ù f HaL â t

In essence this defines an

integral over

an interval from a

to b . Such an integral is called a

definite integral . The values a and

b are called the limits of

integration.

44

Interchanging

the Limits

of ntegration

Ùa
b f HtL â t =

-Ùb
a f HtL â t

We can interchange

the limits of

integration by changing the sign.

45
The Same

Limits
Ùa

a f HtL â t = 0

46

Splitting

the Limits

of ntegration

Ùa
b f HtL â t =

Ùa
c f HtL â t +

Ùc
b f HtL â t

We can split the limits of

integration so

long as a £ c £ b .

47
Equivalent

Integrals

Ùa
b f HtL â t =

Ùa
b f HxL â x

17



48

Constant

Rule for

Definite

Integrals

Ùa
bc â t =

c × Hb - aL
I  will  prove  Argument  38,  the  Constant  Multiple  Rule  for  Integration.  Here  we  begin
with the definition of the integral.

1. By the definition of an integralÙ f HtL â t = FHtL + c.

2. This implies @FHtL + cD ' = f HtL.
3. By argument 32 we can multiply this by an constant k, k @FHtL + cD ' = k f HtL.
4. We can apply this to step 1 and get, Ù k f HtL â t = k FHtL + k c.

5. By argument xx, The Distributive Property, the right hand side of this becomes, 
k FHtL + k c = k @FHtL + cD.

6. By the definition of integration this is equivalent to k Ù f HtL â t = k@FHtL + c].

7. By step 5 then Ù k f HtL â t = k Ù f HtL â t. QED.

Arguments involving sequences and series
In  [5]  I  introduced  the  idea  of  a  series.  Here  I  formalize  that.  I  will  make  three
definitions.

Definition  3  Sequences:  A  sequence  is  a  list,  in  a  specific  order,  of  n  terms.  A

sequence is called infinite if n ® ¥. A sequence may be writeen,

8sn< = 8s1, s2, s3, ..., sn<.
Definition 4 Limit of a Sequence: An infinite sequence {s(n)} has a limit

lim
n®¥

sn = c

if, " p > 0, $ N such that s - p < sn < c + p for n > N.

Definition 5 Series: A series is the sum of the first n terms of a sequence.

â
i=o

n

ai = a0 + a1 + a2 + ... + an

If this is the sum of an infinite sequence, then it is called an infinite series.
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â
i= j

¥

ai = a j + a j+1 + ... + aa + ...

Definition  6  Sequence  of  Partial  Sums:  Associated  with  every  infinite  series  is  the

sum of the first n terms of the infinite series

sn = â
i=o

n

ai = a0 + a1 + a2 + ... + an

This is called the sequence of partial sums 8sn<.
Argument Name Formula Explanation

49
Convergent

sequence

A sequence that has a limit is

said to converge.

50
Divergent

sequence

A sequence that does not

converge is said to diverge.

51
Relevance of

limit theorems

The arguments relating limits

are applicable to the limits of

sequences.

52 Bounded above sn £ B

A sequence is bounded above if

every value of the sequence is

less than some value of B . B is

called the upper bound .

53 Bounded below sn ³ B

A sequence is bounded below if

every value of the sequence is

more than some value of B . B is

called the lower bound .

54
Monotone

nondecreasing
sn £ sn+1

Every subsequent term of the

sequence is less than, or equal

to, the previous term.

55

Monotone

strictly

increasing

sn < sn+1

Every subsequent term of the

sequence is less than the

previous term.

56
Monotone

nonincreasing
sn ³ sn+1

Every subsequent term of the

sequence is greater than, or

equal to, the previous term.
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57

Monotone

strictly

decreasing

sn > sn+1

Every subsequent term of the

sequence is greater than the

previous term.

58

Convergence of

monotonic

sequences

limn®¥ sn =

c £ B

limn®¥ sn =

c ³ B

An infinite sequence that is

bounded from above and is

mononotic nondecreasing is

convergent. Likewise an infinite

sequence that is bounded from

above and is monotonic from

below is convergent.

59
Least upper

bound axiom

If a set of numbers is bounded

above, then there is a least

upper bound B
�

such that all

other upper bounds are greater

than or equal to B
�

.

60

Greatest

lower bound

theorem

If a set of numbers is bounded

below, then there is a greatest

lower bound B
�

such that all

other lower bounds are less

than or equal to B
�

.

61
Proper

divergence
sn ® ±¥

A sequence that tends to infinity

or negative infinity is divergent.

62
Oscillating

sequences

A sequences that diverges,

but is not properly divergent, is

called oscillatory.

63

Monotonic

sequences

and

convergence �
divergence

A monotonic sequence either

converges or is proper divergent.

64 Subsequence

If we can define a new infinite

sequence from a given sequence

by ignoring some terms we have

a subsequence.
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65
Limit of a

subsequence

If 8sn< is a sequence with a limit

c Hor ± ¥L, then any

subsequence of 8sn< will have

a limit of c Hor ± ¥L.
66

Oscillatory

subsequences

A sequence with two

subsequences that have

different limits is oscillatory.

67

Limit of a

subsequence

of a

monotonic

sequence

If a subsequence of the

monotonic

sequence 8sn< has a

limit c Hor ± ¥L then 8sn< also

has a limit of c Hor ± ¥L.

68
Cauchy

condition

Given 8sn< ,

" Ε > 0,

$ N ,

sn - sm < Ε

when

m, n > N .

Far out in the sequence,

all terms are close together.

69 Cauchy criterion

If a sequence converges then it

satisfied the Cauchy condition,

also if the sequence satisfies the

Cauchy condition it is

convergent.

70
Convergence of

infinite series

An infinite series converges if

its sequence of partial sums

is bounded.

71

Proper

divergence

of an

infinite series

An infinite series is proper

divergent if its sequence of

partial sums is unbounded.

72
Oscillating

infinite series

An infinite series is oscillating if

its sequence of partial sums is

oscillatory.
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73 Zero terms

Adding or removing zero terms

to a series has no effect on the

series.

74

Replacement of

k terms in an

infinite series

b1 + b2 + ... +

bk +

ak+1 +

ak+2 +

... + an =

a1 + a2 + ... +

an

+AIb1 + b2 + ... +

bkM
- Ia1 + a2

+ ... +

akME =

sn + d

The effect of replacing terms in

an infinite series is to add a

constant to the nth partial sum

of the original series. In general

this leaves the convergence of

the original series unchanged.

75

sn =

a1 + a2 + ... +

an,

tn = an+1 +

an+2 + ...

= Ú j=1
¥ an+ j Þ

S =

sn + tn

Given that an infinite series

converges and has the sum S ,

then adding a series to it creates

another series that converges

with the sum sn + tn .
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76

For a

convergent

series Úi=1
¥ ai

with

sum k and

we have a

monotinic

strictly

increasing

sequence8bi< of positive

integers. Now

we

also have

c1 = a1 + a2 + ...

+ab1

c2 = at1+1 +

at1+2 +

... + at2

»

cn = atn-1+1 +

atn-1+2

+ ... + atn

then the seriesÚn=1
¥ cn is

convergent

and has sum k .

The converse of this is not true.

We can also say that if ,

after parenthesis are inserted

into a given series, the new

series diverges, then the original

series diverges.

77

Multiplication

of a series

by a constant

A = Úi=1
¥ ai

If 

" k $ ck = d ak,

then 
c A = Úk=1

¥ ck

= Úk=1
¥ d ak

= d Úk=1
¥ ak.

23



78 Sum of series

A = Úi=1
¥ ai

B = Új=1
¥ b j

If " k $ ck =

ak +

bk,

then A + B =Úk=1
¥ ck =Úk=1

¥ Hak +

bkL
= Úk=1

¥ ak +Úk=1
¥ bk.

79

Cauchy

criterion for

infinite series

Úi=1
¥ ai  is 

convergent if 

and only if, 

"Ε > 0, 
$ N ,

such that

an+1 + an+2

+ ... +

am < Ε

when m >

n > N

Thi is Argument 69 rewritten

for infinite series.

80
Dominated

Series

A series Úi= j
¥ ai with real or

complex terms is dominated by

the series Úi= j
¥ bi with

nonnegative

real terms so long

as ai £ bi " i ³ j .
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81

A series Úi=1
¥ ai with

nonegative terms and is

dominated by the convergent

series, Úi=1
¥ bi that has the

sum B , is also convergent

and has the sum A £ B . Also,

Úi=1
n ai £ A £Úi=1

n ai + Új=i+1
¥ b j .

 Things to do for Day Three
Continue  building  your  library  of  references.  Definitely  begin  with  references  [3]  and
[4].

Practice Problems from Day One
è The first problem was to write out three functions of t whose properties you 

understand. For this, I will choose:

f HtL = t3 - t2,

gHtL = H4 + tL3,

and

hHtL =
x t

t3
.

è The second problem was to write out each of the functions as a divided difference 
as in (6) in [1]. Recall that (6) in [1] is,

Xx\ =
D f HtL

D t
=

f Ht + D tL - f HtL
D t

.

thus the three functions become,

f HtL = t3 - t2 Þ
f Ht + D tL - f HtL

D t
=

Ht + D tL3 - Ht + D tL2 - t3 + t2

D t

=
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1

D t
It3 + 3 t2 D t + 3 t D t2 + D t3 - t2 - 2 t D t - D t2 - t3 + t2M

=
1

D t
I3 t2 D t + 3 t D t2 + D t3 - 2 t D t - D t2M
= 3 t2 + 3 t D t + D t2 - 2 t - D t.

gHtL = H4 + tL3 Þ
gHt + D tL - gHtL

D t
=

H4 + t + D tL3 - H4 + tL3

D t

gHtL = H4 + tL3 Þ
gHt + D tL - gHtL

D t
=

H4 + t + D tL3 - H4 + tL3

D t

=

1

D t
It3 + 3 t2 D t + 12 t2 + 3 t D t2 + 48 t + 24 t D t + 48 D t +

12 D t2 + D t3 + 64 - t3 - 12 t2 - 48 t - 64M
=

1

D t
I3 t2 D t + 3 t D t2 + 24 t D t + 48 D t + 12 D t2 + D t3M

= 3 t2 + 3 t D t + 24 t + 48 + 12 D t + D t2.

and,

hHtL =
x t

t3
= Hx tL t-3 = x t-2 Þ

hHt + D tL - hHtL
D t

=
x Ht + D tL-2 - x t-2

D t

Þ =
x AHt + D tL-2 - t-2E

D t

Þ =
x � Ht + D tL2 - x � t2

D t

Þ =
At2 x - xHt + D tL2E � t2Ht + D tL2

D t

Þ =
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1

D t
At2 x - xIt2 + 2 t D t + D t2ME � t2Ht + D tL2

Þ =
xI2 t D t + D t2M � t2Ht + D tL2

D t

Þ =
xH2 t + D tL
t2Ht + D tL2

.

è The third problem is to take the derivative of each function in t. Recall that the 
derivative is,

f ' HtL = lim
D t®0

f Ht + D tL - f HtL
D t

.

So,

f H ' tL = lim
D t®0

f Ht + D tL - f HtL
D t

= lim
D t®0

3 t2 + 3 t D t + D t2 - 2 t - D t

= 3 t2 + 3 t H0L + H0L2 - 2 t - H0L
= 3 t2 - 2 t .

gH ' tL = lim
D t®0

gHt + D tL - gHtL
D t

= lim
D t®0

3 t2 + 3 t D t + 24 t + 48 + 12 D t + D t2

= 3 t2 + 3 t H0L + 24 t + 48 + 12 H0L + H0L2

= 3 t2 + 24 t + 48 .

and

hH ' tL = lim
D t®0

hHt + D tL - hHtL
D t

= lim
D t®0

xH2 t + D tL
t2Ht + D tL2

=
xH2 t + 0L
t2Ht + 0L2
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=
xH2 t L
t2HtL2

=
2 x t

t4

=
2 x

t3
.

Practice Problems
Choose  one  of  the  arguments  by  logic  and  prove  it  is  true.  A good project  is  to  prove
them all.

Conclusions
I  have presented a fairly good reference for beginning to explore the mathematics used
in physics. This is a good beginning. 
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Appendix: Arguments from Basic Mathematics
I  am  assuming  that  you  will  not  need  explanation  for  these.  I  include  them  for
completeness and future reference.

Arguments by algebraic manipulation
In this section I will assume that you are familiar with the basic operations of arithmetic:
addition,  subtraction,  multiplication,  division,  exponentiation,  and  root-taking.  I  will
introduce a number of technical terms that will be understood without fomal definition.

è In algebra, the set of objects that you can choose variables from will be a set of 
numbers.

è The first set of numbers is the natural numbers, the counting numbers, and is 
symbolized N.

è The second set of numbers are the whole numbers, the natural numbers and zero, 
denoted W.

è The third set of numbers is the integers, the whole numbers and the negative of 
the natural numbers, denoted Z.

è The fourth set of numbers is the rational numbers, fractions whose denominator 
and numerator are both integers, denoted Q.

è The fifth set of numbers is the real numbers, the rational numbers and all 
irrational numbers, denoted R.

è The sixth set of numbers is the imaginary numbers, these are multiples of 

i = -1 .
è The seventh set of numbers is the complex numbers, the set of all real and 

imaginary numbers of the form z = x + i y, where x and y are real. This set is 
denoted C.

è A predicate in algebra is frequently called an expression.
è The value of a variable is provided when a variable is replaced with a specific 

choice of object.
è Finding the value of an expression is called evaluation of the expression. You 

must be careful to be consistent in your choise of values for the variables, that is 
the same variable in multiple terms must all have the same values.
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è

Finding the value of an expression is called evaluation of the expression. You 
must be careful to be consistent in your choise of values for the variables, that is 
the same variable in multiple terms must all have the same values.

è When you evaluate an expression you begin by evaluating whatever terms are 
within grouping symbols (parentheses, brackets, etc.). Then you evaluate all 
exponents. Then you evaluate all products and quotients. And then you evaluate 
all sums and differences.

è A polynomial expression is an expression whose terms are integer powers of the 
variables. The highest integer power of the polynomial is called the degree of the 
polynonial. Thus, x2 + x + 1 is an example of a polynomial of second degree with 
three terms.

è A polynomial of only one term is called a monomial.
è Any constant factor of a term in a polynomial is called a coefficient. For example, 

3 x2 has a coefficient of 3.
è Like terms in an expression can be combined by adding, or subtracting, 

coefficients as necessary. Thus, 3 x2 - 5 x2 = H3 - 5L x2 = -2 x2.
è A polynomial of degree 1 is called linear.
è A polynomial of degree 2 is called quadratic.
è A polynomial of degree 3 is called cubic.
è A polynomial of degree 4 is called quartic.
è A polynomial of degree 5 is called quintic.
è A rational expression is the quotient of two polynomials.
è An equation is an expression that states that two or more terms, or combinations 

of terms, have the same value. These will have an equal sign relating the relavant 
values, =.
The solution of an equation is what you get when you evaluate that equation. A 
polynomial equation of a given degree will be called by the name of the 
polynomial of the same degree, (linear, quadratic, cubic, quartic, and quintic).

è There are five relationships between values that are not equality: two values can 
be greater than >, less than <, greater than or equal to ³, less than or equal to £, 
and not equal to ¹. Any expression involving these are called inequalities. A 
polynomial inequality of a given degree will be called by the name of the 
polynomial of the same degree, (linear, quadratic, cubic, quartic, and quintic).

Argument Name Formula Explanation

82
Fraction

Multiplicaton

a

b
× c

d
=

Ha × cL � Hb × d L
Multiplying fractions involves

first multiplying the

denominators and then the

numerators.
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83
Fraction

Division

a

b
¸ c

d
= a×d

b×c

Dividing fractions is just

mutiplying the dividend by

the inversion of the divisor.

84 Cancellation
a

a
= 1

Common factors in the

denominator and numerator

can be replaced by 1,

term - by - term. Thus,

a+1

a
= 1 + 1

a
and not 1.

85

Adding and

Subtracting

Fractions

a

b
± c

d
=

Ha × d ±

b × cL �Hb × d L

86 Adding Terms

n × a +

m × a +

b =Hn + mL ×

a + b

We can add like terms be adding

their coefficients,

unlike terms

cannot be added.

87

Adding

Opposite

Signed

Integers

a + H-bL =

a - b

Subtraction and adding

opposite sign

integers are equal.

88

Adding

Same Signed

Integers

H-aL +H-bL =

-Ha + bL
89

Multiplying

Opposite

Signed

Integers

a × H-bL =

-Ha × bL

90

Multiplying

Opposite

Signed

Integers

a × b =H-aL × H-bL
91

Double

Negative
-H-aL = a
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92
Multplying a

Term by 1
a × b

b
= a × 1 = a

We can always multiply a term

by 1.

93
Multiplying

Exponents
am × an = am+n

94
Dividing

Exponents

am

an = am-n

95 Reciprocal a-1 = 1

a

96 Negative Power a-n = 1 � an

97
Power of

a Product
Ha × bLn = an × bn

98
Power of

a Quotient

an

bn = I a

b
Mn

99
Rewriting

Division

a

b
= a × b-1

100

Multiplying

Same Signed

Integers

a × b =H-aL × H-bL
101

Product

of Roots

Ha × bL^H1 � nL =

a^H1 � nL ×

b^H1 � nL
102

Quotient

of Roots

Ha � bL^H1 � nL =Ha^H1 � nLL �Hb^H1 � nLL
103

Power

of a Root

am ^H1 � nL
= Ha^H1 � nLLm

This also means that if m = n

then we have ann
= a .

104

Root as a

Fractional

Power
a^H1 � nL = a

1
n

105

The General

Commutative

Property

a * b =

b * a

Here we replace * by either

+ or × .
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106

The General

Associative

Property

Ha * bL * c =

a * Hb * cL
Here we replace * by either

+ or × .

107
Distributive

Property

a × Hb + cL =Ha × b L +H a × cL
This is also the basis for

factoring, in which case we

reverse the process.

108
Multiplying

Binomials

Ha + bL × Hc +

d L =Ha × cL +Ha × d L +Hb × cL +Hb × d L
Proof of argument 82, Fraction Multiplication.

1. Assume that we have rational numbers x = a � b and y = c � d.

2. By the definition of a rational number, t � s, where s and t are integers, 

x × y = a

b
× c

d
.

3. This is equivalent to the expression for integers Ha ¸ bL × Hc ¸ dL .

4. We can rewrite this Ja × 1

b
N × Jc × 1

d
N.

5. By the associative property of multiplication we can write this, Ha × cL × J 1

b
× 1

d
N.

6. By the definition of division we can rewrite this, Ha × cL ¸ Hb × dL.
7. By the definition of rational numbers we have, a×c

b×d
.

8. Thus, a

b
× c

d
= a×c

b×d
, QED.

This has been a direct proof.

Algebraic Manipulation in Mathematica
In addition to logical operations. Mathematica is good at algebraic manipulations, too.

Operation Mathematica Command Explanation

Simplify Simplify@exprD
Performs a sequence of

symbolic

transformations on

expr and outputs the

simplest form it can find.
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FullSimplify FullSimplify@exprD
Performs an extensive

sequence of symbolic

transformations on expr

and outputs the simplest

form it can find.

Expand Expand@exprD Expands all products and

integer powers for expr.

Factor Factor@polynomialD Factors a polynomial over

the set of integers.

Collect Collect@expr, patD Collects terms of expr that

match pat.

Together Together@rationalD
Places the terms

of a rational

expression over a common

denominator and then

cancels and factors in the

result.

Apart Apart@rationalD
Splits up a rational

expression as a sum of

terms having minimal

denominators.

Cancel Cancel@rationalD Cancels common

factors in a

rational expression.

PowerExpand PowerExpand@exprD Expands all products and

powers for expr.

First there are a few things to mention regarding Simplify. If we write,

Simplify x2

x2

you  might  think  something  went  wrong.  Why  doesn't  Mathematica  return  the  correct
value of x? This is because Mathematica doesn't know what number system we want to
use. If we say that we want to consider only positive values of x then we write,
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Simplify x2 , x > 0

x

or  even  better  still,  if  we  say  that  x  is  an  element  of  the  set  of  real  numbers,  or
symbolically x Î R,

Simplify x2 , x Î Reals

Abs@xD
this is the correct answer, the square root of x2 in the reals is the absolute value of x.

Most of the time Simplify is good enough. For cases involving so-called special
functions it is often best to use FullSimplify.

Gamma@x + 1D Gamma@1 - xD
Gamma@1 - xD Gamma@1 + xD

Simplify@Gamma@x + 1D Gamma@1 - xDD
Gamma@1 - xD Gamma@1 + xD

FullSimplify@Gamma@x + 1D Gamma@1 - xDD
Π x Csc@Π xD

These are only a brief listing of the most basic capabilities of Mathematica  in terms of
algebraic  manipulations.  I  invite  you  to  explore  the  Documentation  system  and  play
with it.

Arguments relating to logarithms
Expanding  on  the  ideas  from  the  last  section,  we  can  define  exponentiation  and  root-
taking as  inverse  operations,  similar  to  addition  and subtraction.  Thus  we can define  a
root,

Definiiton  1:  Root  of  an  exponent:  Given  an  exponent,  an,  its  nth  root  is  a.  This  is

denoted a = ann
.

We can similary define the logarithm.
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We can similary define the logarithm.

Definiiton 2: Logarithm of an exponent: Given an exponent, an, its base-a logarithm

is n. This is denoted loga an = n.

Argument Name Formula Explanation

109
Logarithm

of a product

lognHa bL =

logn a +

logn b

The logarithm of a product is

the sum of the logarithms.

110
Logarithm of

a quotient

lognI a

b
M =

logn a -

logn b

The logarithm of a

quotient is the difference of

the logarithms.

111
Logarithm

of a power

logx an =

n logx a
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