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Introduction
This is the first  of a series of articles/book chapters/web pages that I  intend to write about the
nature and processes of theoretical physics. I plan to author corresponding mathematics writings
that  will  explain  in  greater  depth  the  justifications  and  deeper  subtleties  of  the  mathematical
techniques  that  will  be  brought  to  bear.  In  this  series  I  will  present  mathematical  techniques,
often  without  justification  and  with  the  understanding  that  you  will  be  able  to  explore  those
ideas  more  fully  elsewhere.  This  writing  is  an  overview  of  theoretical  physics;  the  first  cut
through  the  material,  if  you  will.  I  will  then  expand  each  of  the  main  topics  into  their  own
writings; the second cut through the material. This expansion of the material will proceed until I
have become too exhausted to continue, at which point someone else can pick it up. In reality,
at some point I will make a decision to stop a certain expansion in favor of those that are more
interesting to me; you are free to expand the material as you like.

In  its  fundamental  essence this  will  constitute  a  complete  course in  theoretical  physics
from the ground up. I assume that you have little background in physics, and that you have had
exposure to some algebra and geometry at the high school level. Beyond that you will need to
keep a certain mental agility to be able to cope with the uncertainties and ambiguities inherent
in physics.

In  what  follows  I  will  begin  by  giving  an  illustrative  example  of  theoretical  physics.  I
will then describe, in a very broad sense, what we consider to be the subject matter of physics.
This  will  be  followed by  describing  what  theoretical  physics  is  about.  Then  I  will  discuss  the
mathematical  and  computational  aspects  of  physics.  This  will  be  followed by  a  description  of
things to do before starting the next writing.

The nature of theoretical physics
If you are reading this, you are interested in theoretical physics. But what is theoretical physics?
I have come up with several definitions, based on how you approach the subject.



If you are reading this, you are interested in theoretical physics. But what is theoretical physics?
I have come up with several definitions, based on how you approach the subject.

1. The modeling approach to theoretical physics.  Another  way of  calling  this  would  be
the phenomena-centered approach, whose goal is to understand a specific phenomena by
developing either a mathematical or computational model. You begin this by choosing a
phenomena to study.  Then you choose an approach to representing the phenomena;  can
you represent it as particle? a field? or some continuous distribution of matter? Then you
choose  a  mathematical  formulation.  Examples  of  mathematical  formulations  are
Newtonian  mechanics,  Maxwell's  equations,  Lorentz  covariance,  the  Maxwell-
Boltzmann distribution,  etc.  Such formulations Constitute much of the material  of  most
textbooks  and  courses  on  physics.  You  then  adapt  your  approach  to  the  mathematical
formulation,  thus  developing  a  mathematical  representation  of  your  phenomena.  You
then use  physical,  mathematical,  and/or  computational  arguments  and methods  to  make
predictions  in  the  form  of  tables,  plots,  and/or  formulas.  By  studying  these  results  in
different circumstances you can extend our understanding of the phenomena. This is the
most  direct  method  of  doing  theoretical  physics,  it  is  a  straight  application  of
mathematical or computational methods. It is certainly the most structured way of doing
theoretical physics.

2. The  constructive  approach  to  theoretical  physics.  This  can  be  thought  of  as  the
method to develop a new formulation of a physical theory. Examples are the Lagrangian
formulation  of  mechanics,  the  Lagrangian  formulation  of  electrodynamics,  the  Eulerian
formulation of fluid dynamics, the path-integral formulation of quantum mechanics, and
so on. You begin by choosing how you represent objects in your developing theory. Then
you  choose  some  quantity,  or  set  of  quantities  to  base  your  construction  on.  Then  you
choose an argument  to  base your  construction on.  Are you seeking to  find symmetries?
Are you arguing from some conserved quantity? Are you assuming that your quantity is
minimized?  For  example,  in  the  Lagrangian  formulation  you  choose  to  create  a  new
quantity called the Lagrangian and then you work out the consequences when the integral
of  the  Lagrangian—the  action—is  minimized.  This  leads  to  the  Euler-Lagrange
equations  of  motion,  an  new  formulation  of  classical  mechanics.  This  is  a  much  more
difficult, but powerful method—you build the formulation. The difficulty stems from the
lack of structural guidelines in creating a new formulation.

3. The abstract approach to theoretical physics.  This mode is where you take a number
of  specific  cases  and  generalize  their  results.  For  example,  knowing  that  when  a
derivative is 0 and quantity is unchanged; you take the zero derivatives of momentum in
many cases and generalize that  into the law of conservation of momentum. This sort  of
activity is very difficult since there are few guidelines for how to proceed beyond what is
already known.

4. The  unification  approach  to  theoretical  physics.  This  is  based  on  the  idea  that  it
would be nice if there was a single theory to govern a wide range of phenomena. There is
no  real  reason to  believe  that  this  is  true  generally.  This  is  one  difficulty  with  practical
application. another difficulty is that all of our equations are, to one degree or another, an
approximation  of  reality.  So  the  fact  that  equations  in  different  fields  look  alike  is
another  way  of  saying  that  the  approximations  are  similar.  Does  that  mean  the
phenomena are  also similar?  Sometimes.  Isaac Newton unified gravity  at  the  surface of
the  Earth  and  gravity  away  from  the  Earth.  James  Maxwell  unified  electricity,
magnetism,  and  light.  Abdus  Salam,  Sheldon  Glashow  and  Steven  Weinberg  unified
electromagnetism and the weak nuclear  force.  The work of  unifying electroweak theory
with the strong interaction force is a work in progress. Even less success has been made
in unifying gravity.
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The  unification  approach  to  theoretical  physics.  This  is  based  on  the  idea  that  it
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application. another difficulty is that all of our equations are, to one degree or another, an
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the  Earth  and  gravity  away  from  the  Earth.  James  Maxwell  unified  electricity,
magnetism,  and  light.  Abdus  Salam,  Sheldon  Glashow  and  Steven  Weinberg  unified
electromagnetism and the weak nuclear  force.  The work of  unifying electroweak theory
with the strong interaction force is a work in progress. Even less success has been made
in unifying gravity.

So this, then, is the general nature of theoretical physics.

An example of theoretical physics
In this section I intend to show how an idea in physics evolves. This will demonstrate that ideas
change and this change leads to greater accuracy.

The ancient Greek philosophers, often led by Aristotle, had the idea that gravitation was
a  natural  tendency  for  objects  to  be  attracted  to  an  almost  mystical  place  in  the  world.  This
special  place  was  the  center  of  the  Earth  and  the  heavier  an  object  was  the  more  strongly
attracted  to  the  center  it  would  be.  In  other  words,  their  weight  determined  their  proper  place
and they all settled into that place. This was their idea of gravity. Today scientists laugh at that
idea, but what tells us that this idea is wrong? What is the right idea?

The fact that Aristotle's idea of gravity was wrong took a long time to be realized. It was
Galileo  that  put  the  proverbial  "nail  in  the  coffin".  His  argument  went  something  like  this;
note—I  will  enumerate  the  arguments  so  they  are  easier  to  follow  (this  will  be  a  standard
procedure for proofs and derivations):

1. We will assume that an object that is heavy falls faster than a lighter object—as they are
each trying to get to their proper place in the world. This idea explains why it is possible
to pick up small objects, but not buildings or mountains; the latter being in their proper
places. This is the idea promoted by Aristotle.

2. What happens when we strap a lighter object to a heavy one? There are two possibilities;
either  the  combined  object  acts  like  a  single  object,  or  it  does  not.  This  idea  is  an
example  of  the  law of  the  excluded middle.  Something  either  is  or  it  is  not,  there  is  no
middle. These possibilities lead to the next two arguments. Examining each of these two
situations is an example of a proof technique called case analysis.

3. If  the  combination  forms a  single  object,  that  single  object  is  heavier  than either  of  the
two  components.  By  the  assumption  in  step  1  the  single  heavier  object  must  fall  faster
than the heavier of the two component objects. 

4. If  the  combination  does  not  form a  composite  object,  then,  by  the  assumption  made  in
step 1, the lighter object will fall slower than the heavier. Since they are connected by the
strap, the lighter object will slow the rate of fall of the heavier object, so the combination
will not fall as fast as the heavier object.

3



4.

If  the  combination  does  not  form a  composite  object,  then,  by  the  assumption  made  in
step 1, the lighter object will fall slower than the heavier. Since they are connected by the
strap, the lighter object will slow the rate of fall of the heavier object, so the combination
will not fall as fast as the heavier object.

5. These  two  arguments  lead  to  the  prediction  that  the  same  combination  of  objects  fall
both faster and slower than the heavier of the two component objects alone. A situation
where  a  given  assertion  leads  to  two  or  more  opposing  outcomes  is  called  a
contradiction.  No  assertion  that  leads  to  a  contradiction  can  be  true.  This  method  of
proof is proof by contradiction,  or reductio ad absurdum.  Let us say that you are trying
to  prove  an  assertion.  The  first  step  in  a  proof  by  contradiction  is  to  assume  your
assertion to be false. You then show that this falsehood leads to a contradiction. Since no
assertion  leading  to  a  contradiction  can  be  true,  the  falsehood  is  then  itself  false.  This
proves your original assertion cannot be false. By the law of the excluded middle, it must
then be true. This completes a proof by contradiction.

6. In this case we have proved that Aristotle's assertion that objects fall at a rate according
to  their  weight  is  false;  this  is  the  same  as  proving  that  objects  fall  in  a  way  that  is
independent  of  their  weight.  In  fact,  this  principle  is  the  law of  falling  bodies.  To  state
this law explicitly, objects fall under the influence of gravity independent of their weight.
This implies that the influence of gravity is the same for all objects.

7. Having made the prediction that objects fall independently of their weights, experiments
were performed that confirmed this result.

This  is  a  fantastic  example  of  the  abstract  approach  to  theoretical  physics!  We  have  an
established  idea,  predicted  that  this  idea  produced  results  that  were  contradictory,  thus
formulated  a  new  hypothesis  and  confirmed  it  by  both  logical  reasoning  and  physical
experiment.

Physical phenomena
There is  a  well-worn definition of  physics that  it  the study of matter  and energy.  I  do not  like
that  definition,  as  it  is  almost  misleading.  Physics  concerns  itself  with  the  most  fundamental
principles  of  the  universe  around  us.  This  boils  down  to  understanding  the  most  elementary
constituents of matter and the interactions between them.

Wait a minute! What about energy? The truth is we do not really know what energy is.
We can  calculate  energy  for  many  different  situations.  We can  use  these  calculations  to  learn
about  different  situations,  but  these  calculations  result  from  matter  and  interactions.  All  we
know about energy is that it is some number we can calculate and use in calculations.

The attempt to understand matter by studying idealized objects without regard to shape
or size is called particle theory. The first step in understanding any physics is to try to simplify
the situation by removing all complications and then working out all of the consequences of the
situation.  The  particle  is  this  kind  of  simplification.  For  such  a  simple  explanation,  it  is  very
rich  in  principles  and  consequences.  In  the  last  century,  particle  physics  has  also  taken  on  a
definition relating to subatomic particles.

The  attempt  to  understand  interactions  between  collections  of  matter  by  examining
properties  that  seem  to  be  everywhere  is  called  field  theory.  Here  we  look  at  a  property  like
temperature. We then state that this property exists everywhere we are considering. Thus there
is  a  temperature  at  every  point  we  can  possibly  look  at  in  the  situation  we  are  studying.  This
situation is said to represent a field, in this case a temperature field.

The  theories  of  matter  are  the  result  of  the  inevitable  complication  of  nature  over
idealized  theories.  Once  we  have  studied  many  simple  ideas,  we  need  to  make  them  more
realistic  by  reintroducing  some  of  the  complications  that  we  removed  in  the  process  of
simplification.  We  can  treat  matter  in  bulk  as  a  kind  of  matter  field.  We  can  also  examine
matter  and  the  interactions  of  matter  at  ever  smaller  scales,  where  the  simple  ideas  no  longer
hold.

Applied  physics  is  a  collection  of  disciplines  that  use  physics  to  describe  specific
phenomena. These have the character of being much more complicated than pure physics, since
they  deal  with  situations  where  the  simplifications  of  pure  physics  do  not  always  hold.  The
simplified theories of pure physics have removed complications that must be considered in the
more realistic situations covered by applied physics. Here we include astrophysics, atmospheric
physics,  biophysics,  physical  chemistry,  the  physical  theory  of  computation  and  information,
electronics,  engineering  physics,  geophysics,  physical  hydrology,  materials  physics,  and
physical oceanography.
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Applied  physics  is  a  collection  of  disciplines  that  use  physics  to  describe  specific
phenomena. These have the character of being much more complicated than pure physics, since
they  deal  with  situations  where  the  simplifications  of  pure  physics  do  not  always  hold.  The
simplified theories of pure physics have removed complications that must be considered in the
more realistic situations covered by applied physics. Here we include astrophysics, atmospheric
physics,  biophysics,  physical  chemistry,  the  physical  theory  of  computation  and  information,
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Physical laws
Most everyone has heard the term laws of  physics,  but  what  is  a  law of  physics? How does it
come  about?  What  makes  it  a  law?  Let  us  say  that  you  have  been  thinking  about  the
relationship between the pressure, volume, and temperature of a gas. After a while you become
so  curious  that  you  do  some  experiments  and  measure  the  pressure  of  a  gas  for  different
volumes at constant temperature. You find that the pressure, symbolized by P is proportional to
the inverse of the volume, symbolized by V , we write this symbolically,

(1)P µ V -1.

Where  µ  is  the  proportionality  symbol.  After  some  more  analysis  we  note  that  (1)  is  exactly
true when the volume is multiplied by some constant determined by the physical system under
study. We will symbolize this constant c, so we have,

(2)P = c V -1.

We can rewrite this,

(3)
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(3)

P V = c .

This is called Boyle's law. It is one of the basic gas laws.
All  such  laws  are  similar  in  two  ways.  First,  they  are  similar  in  that  they  are  all  true

within  what  I  call  their  region  of  applicability,  that  is  when  the  assumptions  that  were  made
when they were discovered are still valid. Second, they all break down in some way when those
assumptions  are  no  longer  valid,  in  other  words  when the  law is  used  outside  of  its  region  of
applicability.

So, is physics just a collection of laws? No, such a collection is an absolute statement of
fact and is unable to extend itself beyond the regions of applicability of the laws. It, also, does
not  explore  the  relationships  between  the  various  laws.  Any  list  of  laws  of  physics  will,  by
necessity, be restrictive. How, then, does physics advance into regions not covered by existing
laws? As we will see in the next section, it happens by modifying existing laws, or creating new
ones.

Physical theories and the program of theoretical 
physics

What is a physical theory? It turns out that the answer to this question is a little counterintuitive
from the point of view of the general idea of what a theory is. A scientific theory is a body of
work leading to a self-consistent idea that  is  considered to be a fact.  In most cases there is  no
controversy about the theory in question.

The program of theoretical physics is all about developing physical theories. This takes
us back to the section on the nature of theoretical  physics;  where you choose the goal  of  your
physical theory.

For a model-based approach the process begins by forming primitive, intuitive, and ill-
defined notions  about  what  you are  studying.  From this  beginning you construct  precise  ideas
and  give  them  symbolic  representation.  You  then  formulate  relationships  between  these  ideas
from observation,  experiment,  or  theoretical  work;  these  are  the  physical  laws of  the  previous
section. Often they are stated in the form, "Let us assume...". By manipulating these statements,
making  physical  arguments,  and  making  calculations  for  specific  situations,  we  can  make
predictions  with  these  statements.  This  type  of  prediction  is  called  a  model.  Some models  are
based  on  mathematical  derivations,  some  are  computer  simulations.  A  body  of  models  linked
by  physical  argument,  derivation  methods,  and/or  computer  simulations  constitute  a  physical
theory. In specific you begin by choosing a particle theory, a field theory, a theory of matter, or
a  theory  of  applied  physics.  Then,  you  can  choose  either  a  mathematical  or  computational
formulation and begin to study the problem you are interested in. Often, this process starts with
a  study  of  the  basic  relationships  between  the  quantities  you  are  interested  in,  this  is  called
dimensional  analysis.  Another  initial  approach  is  to  estimate  the  orders  of  magnitude  of  the
quantities  you  will  study.  Both  of  these  techniques  have  come  to  be  known  as  back-of-the-

envelope physics,  and they allow you to  have some idea  of  whether  an  answer  you get  makes
sense or not.

For  a  constructive  approach  the  process  begins  in  much  the  same  way.  Again  you
choose  a  particle  theory,  a  field  theory,  a  theory  of  matter,  or  a  theory  of  applied  physics.
Instead  of  choosing  an  existing  mathematical  or  computational  formulation,  you invent  a  new
quantity  to  play  with.  This  should  be  based  upon  the  existing  quantities  of  the  theory,  but
viewed in  a  new way.  This  new way  of  viewing  the  new quantity  can  be  based  on  functional
relationships with the known quantities.  It  could be be based on finding symmetries—ways of
changing  the  model  that  leaves  the  quantity  unchanged.  It  could  be  based  on  conservation—
using  the  fact  that  if  a  quantity  is  conserved  it  does  not  change.  It  could  be  based  on
minimization—the idea that a model will always have the least value of a quantity in order to be
most efficient.  No matter what it  is  based on, you then work out the ramifications of this new
formulation.

For an abstract  approach you begin by examining one or  more models.  Then you look
for  things  that  are  both  common  to  them  all  and  not  already  encompassed  by  the  existing
theory.  This  is  somewhat  ambiguous  because  it  is  as  much  art  as  it  is  science  to  find  such
things. Once you find such a common element you assume that it  is true and you work out its
ramifications.

For  the  unification  approach,  you  begin  by  deciding  what  to  unify.  Then  you  try  to
figure out how to perform this unification. Such a unification will result in a single formulation
that  encompasses  all  of  the  things  you  want  to  unify.  Then  you  attempt  to  prove  that  the
unification scheme is mathematically viable. Then you try to make models based on it.
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Mathematical physics
The  formulation  and  solution  of  physics  problems  by  means  of  mathematical  structures  and
techniques is  called mathematical  physics.  It  is  composed of two main parts:  the development
of new mathematics, and the application of existing mathematics to physics problems.

In  physics  most  of  the  models  we  develop  will  involve  one  quantity  changing  with
respect to another. Systems that change in such a way are referred to as dynamical systems. Let
us say that we are modeling the change in location with respect to time. We say that for time, t,
we  have  a  corresponding  value  of  location,  xt.  Now  we  measure  the  location  at  n  time  steps
later, t + n time later; the value of the location will be xt+n. We can then say that the change in
location, D x, is,

(4)
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(4)

D x = xt+n - xt.

This  is  called  an  increment  in  x.  Should  this  expression  be  equivalent  to  some  function  of  t,
then we call it a finite difference equation. This is the simplest model of a changing system, and
it forms the basis for numerical computer models. We can get the average (or mean) change in
position with time if we take the ratio of the change in location with the corresponding change
in time,

(5)Xx\ =
D x

D t
=

xt+n - xt

t + n - t
=

xt+n - xt

n
.

This is called a divided difference. It is important to note that we can also write this in another
form, using the standard notion for functions as f ,

(6)Xx\ =
D f HtL

D t
=

f Ht + D tL - f HtL
D t

.

If  we  think  about  (5)  or  (6),  we  can  see  that  if  we  decrease  the  time  increment  in  the
denominator then the estimate of the average will become more accurate. The value of the mean
change will get closer to the actual value. On the other hand, if we make the denominator equal
to 0 we get the disaster known as a singularity, where the mean value expands without limit.

Fortunately,  an  invention  has  been  created  to  prevent  this  singularity  from  happening.
We can state that we will take the limit of the mean value such that D t  approaches zero. This
means that the distance representing the time interval, in essence the measurement error, drops
to practically nothing. To actually calculate this result we must perform the following steps:

1. Write f HtL explicitly, that is you write out the entire expression for f HtL.
2. Write f Ht + D tL explicitly and expand algebraically as required.

3. Write f Ht + D tL - f HtL explicitly and evaluate the difference as required.

4. Divide through f Ht + D tL - f HtL by D t and evaluate the quotient as required.

5. Substitute 0 for all instances of D t. This is taking the limit as D t goes to 0. Perform all 
necessary multiplications by 0.

What you are left with is called a derivative of the function. We write it in many different ways
that are all equivalent,

(7)
â x

â t
=

d x

d t
= f ' HtL = Dt x = lim

D t®0

D f HtL
D t

= lim
D t®0

f Ht + D tL - f HtL
D t

.

This expression is the best possible approximation  of the change of a function with respect to
another quantity. For example,

1. Assume f HtL = t3.

2. Then f Ht + D tL = Ht + D tL3 = t3 + 3 t2 D t + 3 t D t2 + D t3.
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2.

Then f Ht + D tL = Ht + D tL3 = t3 + 3 t2 D t + 3 t D t2 + D t3.

3. Then f Ht + D tL - f HtL =Ht + D tL3 - t3 = t3 + 3 t2 D t + 3 t D t2 + D t3 - t3 = 3 t2 D t + 3 t D t2 + D t3

.

4. Dividing by D t we have 3 t2 + 3 t D t + D t2.
5. We take the limit as D t goes to 0, 3 t2 + 3 t � 0 + 0 = 3 t2.

Now, we can use this principle to approximate the value of the function at any point a.
To do this we use the formula, where f ' HtL is the derivative.

(8)f HtL » f HaL + f ' HtL Ht - aL.
This is called the linear approximation. We can use our example above to calculate 113.

1. Choose a = 10. I chose this value because 10 is close to 11 and the cube is easy to 
calculate.

2. 103 = 1000.
3. We know that f ' HtL = 3 t2 = H3L I112M = H3L H121L = 363.

4. We can calculate 11-10 = 1.
5. So, 113 » 103 + 3 t2 = 1000 + 363 = 1363.
6. Note that the actual value of 113 = 1331. We were off by 32, which is an error of 2.3%; 

not too bad.

For  more  details  see  references  [1],  [2],  [3],  and  [4].  It  is  important  to  note  the  relationship
between  the  finite  difference  and  the  derivative.  In  essence  they  serve  the  same  purpose,  the
derivative  is  for  situations  where  variables  change  smoothly,  continuously,  and  the  finite
difference is where variables change in discrete steps.

As  the  derivative  can  be  thought  of  as  the  calculus  form  of  subtraction  (based  on  the
finite-difference),  what  about  addition?  Is  there  a  calculus  form  of  addition?  Yes,  when  we
accumulate  all  the  little  bits  of  something  considered  in  differentiation  (taking  the  derivative)
we call  that  integration.  Integration is  the  opposite  of  differentiation.  If  you look at  a  table  of
derivatives  and  you  start  with  the  derivative,  the  function  the  derivative  came  from  is  the
integral. In the example above, we began with f HtL = t3  and its derivative f ' HtL = 3 t2; were we

to integrate this derivative we would get t3 plus a constant as the result. We can write,

(9)FHtL = à f ' HtL â t = f HtL + c.

Here c  represents an arbitrary constant that  can be determined from the details  of the problem
being  studied.  When  we  differentiate  a  constant  it  goes  away  (since  there  is  no  change  in  a
constant). When we integrate, we must always add an arbitrary constant, as such may be present
without  any  trace  following  the  differentiation.  Expression  (9)  is  called  an  indefinite  integral.

The  symbol  Ù  is  called  a  summa,  and  is  a  stretched  out  s,  signifying  a  summation.  What  is
being summed are all  the bits  of t  described by the symbol â t.  More details  about this can be
found in references [1], [2], [3], and [4].

Just as there is a finite difference correlating with the derivative for the discrete case, so
too is there a discrete analogue of the integral. Let us say that we are summing a collection of n
small increments of t, we can write,
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Here c  represents an arbitrary constant that  can be determined from the details  of the problem
being  studied.  When  we  differentiate  a  constant  it  goes  away  (since  there  is  no  change  in  a
constant). When we integrate, we must always add an arbitrary constant, as such may be present
without  any  trace  following  the  differentiation.  Expression  (9)  is  called  an  indefinite  integral.

The  symbol  Ù  is  called  a  summa,  and  is  a  stretched  out  s,  signifying  a  summation.  What  is
being summed are all  the bits  of t  described by the symbol â t.  More details  about this can be
found in references [1], [2], [3], and [4].

Just as there is a finite difference correlating with the derivative for the discrete case, so
too is there a discrete analogue of the integral. Let us say that we are summing a collection of n
small increments of t, we can write,

(10)t = D t0 + D t1 + D t2 + … + D tn = â
i=0

n

D ti.

This  is  called  a  series.  If  n = ¥,  then  we  call  it  an  infinite  series.  The  series  is  the  discrete
analogue for the integral. Again you can find out more in references [1], [2], [3], and [4].

Computational physics
Computational  physics  is  similar  to  mathematical  physics  in  that  it  is  a  means  of  formulating
and  solving  physics  problems.  Computational  physics  involves  both  the  development  of  new
computational structures and the application of existing ones.

We  will  be  using  the  computer  algebra  system  called  Mathematica  to  develop  our
computational  models.  In  Mathematica  we  represent  a  general  finite  difference  equation,  like
(4) above, by the user-created function,

delx@t_, n_D := x@t + nD - x@nD
This  is  the  general  form  of  a  function  in  Mathematica,  fundtionname[arguments].  The  _  is  a
symbol for pattern matching. Anything that replaces the t_ symbol replaces every instance of t
later on. Thus delx[a,b] becomes x[a+b]-x[a], or,

delx@a, bD
-x@bD + x@a + bD

The average can be written,

avex@t_, n_D :=
x@t + nD - x@nD

n

So,

avex@a, bD
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-x@bD + x@a + bD
b

We can take the limit of a function using the limit command. To find the limit,

lim
x®a

f HxL
we write

Limit@f@xD, x ® aD
Limit@f@xD, x ® aD

For example,

lim
x®a

x3

is

LimitAx3, x ® aE
a3

We  can  calculate  a  derivative  using  the  D  command.  The  syntax  is  D[function,  independent
variable]. For example, the derivative of t3 with respect to t is

DAt3, tE
3 t2

We could write the linear approximation for f HtL
linapp@x_, t_, a_D :=

HFunction@u, xD@aD �. u ® aL +

HD@Function@u, xD@tD, uD �. u ® tL Ht - aL
Here we have used the command Function[pattern,variable][argument] to specify the functional
form  we  are  going  to  use.  Then  we  use  the  symbol  /.  to  indicate  the  transformation  of  the
specified symbol to another specified symbol. We calculate 113,

linappAu3, 11, 10E
1363

Which  is  what  we  expected.  We  can  calculate  integrals  using  the
Integrate[function,independent variable] command. We integrate t2.
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Which  is  what  we  expected.  We  can  calculate  integrals  using  the
Integrate[function,independent variable] command. We integrate t2.

IntegrateAt2, tE
t3

3

We can find a discrete sum using the Sum[function,iterations] command. Here we sum t2.

SumAt2, 8t, 0, 10<E
385

or

SumAt2, 8t, 0, n<E
1

6
n H1 + nL H1 + 2 nL

Things to do for Day Two
Begin building your library of references. Definitely begin with references [1], [2], [3], [4], and
[9]. Reference [5] is a gold mine, and I use it now—even though I have the immensely powerful
computer algebra system (CAS) Mathematica. Check out the web sites listed in [6]. Work some
problems  in  calculus  and  do  not  be  concerned  with  how  you  did  on  them,  just  get  some
experience.

Get  a  computer.  Plain  and  simple—a  computer  is  absolutely  essential  these  days.  Get
one and use it every day.

Get  a  Computer  Algebra  System (CAS).  I  recommend Mathematica  but  if  you  cannot
afford  it,  then  there  is  a  free  alternative  in  Maxima.  You  can  download  it  from  here:
http://maxima.sourceforge.net/,  other  alternatives  are  available,  but  they  require  LISP  or  C++
languages to be installed on your system, and you need to build them—this can be a lot of work.
Learn  to  use  it  and  then  use  it  to  check  your  work.  There  is  an  inexpensive  home  version  of
Mathematica  that  is  a  fully  capable  version  of  the  software.  It  runs  about  $300,  so  it  is  well
within most budgets.

Practice problems
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Practice problems
To become proficient at theoretical physics, you must do it. Each of these writings will include
a section on practice problems. These will be solved in the next writing.

1. Write out three functions of t whose properties you understand.
2. Express each function from problem 1 as a divided difference as in (6).
3. Express each function from problem 1 as a derivative in t.

Conclusions
I have presented a basic definition of what theoretical physics is all about. I have also presented
a few mathematical tools to get you started. All-in-all this is a good beginning. Remember that
this  is  the  first  session  in  studying  a  field  that  has  enjoyed  rapid  expansion  for  the  last  four
hundred years.

While you work through these writings it is a good idea to read popular accounts and to
keep  track  of  recent  events  in  physics,  I  particularly  like  reference  [7]  for  this.  I  suggest
reference [8] as a means of trying to keep abreast of what is new. It is the arXive (pronounced
arkive)  preprint  server  and  should  be  a  daily  required  reading  list  for  theoretical  physicists.  I
doubt that you will get much out of it for a long time, but it can motivate you. A lot of review
articles appear here and you can use them to frame your interests.  One way of doing this is to
read  until  you  encounter  something  you  don't  understand  and  then  work  backwards,  looking
things up until you reach a point where you do understand.
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