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Introduction to Non-Radial Stellar Pulsation
The Approximation

The system of Equations
Perturbation and Linearization.

We introduce the basic principles [AC-DK, Cor, LW, SVH, T]
Perturbation quantities ξ, η:

Lagrangian displacement vector ~ξ
~ξ = ξr̂ +∇hη (spherical coords.) ξ is aka δr .

∇hη =
(

0, 1
r
∂η
∂θ ,

1
r sin θ

∂η
∂φ

)
Spheroidal normal modes (∇× ~ξ)r = ~0
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Governing Equations - Isentropic Model.

Physical quantities: ρ density, P pressure, V potential, ~g
acceleration due to gravity, Γ1 is adiabatic exponent.
Linearized Governing Equations: Expressed in terms of ~ξ:

δρ = −∇ · (ρ~ξ) (mass conservation)
δP = −Γ1P∇ · ~ξ − ~ξ · ∇P (isentropic equation of state)
1
ρ∇P = ~g = −∇V (equilibrium)

∇2δV = −4πG∇ · (ρ~ξ) (Poisson’s equation).
(δ Eulerian perturbation; ‘ derivative wrt r )

C. Winfield Cowling Approximation
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Expansions in terms of spherical harmonics Y m
` .

Superposition of modes of the form

ei(σ`t+mφ)ηl,m(r)Y m
` (θ, φ)

ei(σ`t+mφ)ξl,m(r)Y m
` (θ, φ)

After separation of variables, equations decouple w.r.t ` .
Spheroidal normal modes are degenerate w.r.t. m.

C. Winfield Cowling Approximation
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Resulting System - LW Formulation

Subscripts are dropped, understanding that frequency σ and
dependent variables depend on degree `

d u
d r

=
g
c2 u +

[
`(`+ 1)

σ2 − r2

c2

]
y +

r2

c2 Φ (1)

d y
d r

=
σ2 − N2

r2 u +
N2

g
y − d

d r
Φ(r) (2)

1
r2

d
d r

(
r2 d Φ

d r

)
− `(`+ 1)

r2 Φ = 4πGρ
(

N2

r2g
u +

1
c2 y

)
(3)

(Ledoux and Walraven)
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Here
u def

= r2ξ, y def
= δp

ρ , Φ
def
= δV

c =
√

Γ1p
ρ is the speed of sound

N2 = −g
(

g
c2 + d ln ρ

d r

)
: N is the Brunt-Väisäla frequency

Boundary conditions at stellar center r = 0 and stellar
surface r = R, typically.
Boundary-value problems in terms of σ form (non-linear)
eigenvalue problems for each `: σ called an
eigenfrequency.

C. Winfield Cowling Approximation
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Alternative Formulation - ES

d u
d r

=
g
c2 u +

[
`(`+ 1)− σ2 r2

c2

]
η +

r2

c2 Φ (4)

d η
d r

=
1
r2

(
1− N2

σ2

)
u +

N2

g
η − N2

σ2g
Φ(r) (5)

1
r2

d
d r

(
r2 d Φ

d r

)
−
[
`(`+ 1)

r2 − 4πGρ
c2

]
Φ = 4πGρ

(
N2

r2g
u +

σ2

c2 η

)
(6)

(Eisenfeld and Smeyers)
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Introduction to Non-Radial Stellar Pulsation
The Approximation

Cowling Approximation

In the so-called Cowling approximation, the perturbation
Φ = δV is neglected in (1), (2) or in (4), (5) leaving

d u
d r

=
g
c2 u +

[
`(`+ 1)

σ2 − r2

c2

]
y

d y
d r

=
σ2 − N2

r2 u +
N2

g
y

or
d u
d r

=
g
c2 u +

[
`(`+ 1)− σ2 r2

c2

]
η

d η
d r

=
1
r2

(
1− N2

σ2

)
u +

N2

g
η

(resp.).
C. Winfield Cowling Approximation
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Integro-differential Equation
Large-Parameter Asymptotics

Main Technique

We apply analysis of equations of more abstract form

L~x = F (~x) +~f (7)

where
F is symmetric on a real Hilbert space H (eg. L2(a,b)).
L self-adjoint (SA) on a subspace H dense in H : H is
called a core for L.
H may depend on SA boundary conditions imposed.
L2: Think QM; integral inner product; ||~x || =

√
< ~x , ~x >

C. Winfield Cowling Approximation
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Integro-differential Equation
Large-Parameter Asymptotics

A Theorem by Amann

We will be applying the following theorem which is a special
case (linear version) of Theorem 2.6 of [A]

Theorem 2.1

Suppose the following hold for some γ > 0 :〈
(L − F )~x , ~x

〉
≤ −γ||~x ||2 ∀~x ∈ H1〈

(L − F )~x , ~x
〉
≥ γ||~x ||2 ∀~x ∈ H2;

H = H1 ⊕H2

Then, there is a unique solution ~y ∈ H to (7); and, the solution
satisfies

||~y || ≤ 2
γ
||~f ||

C. Winfield Cowling Approximation



Intro and Motivation
Main Tools

Adiabatic Equilibrium
Results

Summary and Outlook
Appendix

Integro-differential Equation
Large-Parameter Asymptotics

Particulars

L and F have complete set of eigenfunctions
{ψk}nk=1 and {φk}nk=1 with associated eigenvalues {λk}nk=1
and {νk}nk=1, resp.
The spectra are discrete (pure-point) where

λk ↘ −∞; νk ↗ 0

Slight modification allows assumption of only non-zero
eigenvalues.
We can take γ = dist(spec(L), spec(F )) > 0

C. Winfield Cowling Approximation
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Integro-differential Equation
Large-Parameter Asymptotics

Enter Asymptotics

We see homogeneous systems

d
d r

X = σ2AX

for large σ > 0 where A = Λ0 + σ−2Λ1 + σ−4Λ2

Apply asymptotic methods [CL] in combination with main
theorem.
Form non-homogeneous equations to effectively decouple.
Change of variables and alternative parameterizations
pursued.

C. Winfield Cowling Approximation
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Recast ES Formulation
Recast LW Formulation

Adiabatic Equilibrium: Simplifying Assumption

We will set
N2 = 0

on [a,b] adiabatic equilibrium whereby
aka isentropic equilibrium (explicitly assume reversibility)
g = −c2 d ln ρ

d r

A very convenient integrating factor results.
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Recast ES Formulation
Recast LW Formulation

Recast ES

The first two equations of the ES system

d u
d r
− g

c2 u −
[
`(`+ 1)− σ2 r2

c2

]
η =

r2

c2 Φ (8)

d η
d r
− 1

r2 u = 0 (9)

Rewrite ES as

d
d r

(
r2ρ(r)

d η
d r

)
−
[
`(`+ 1)− σ2 r2

c2

]
ρ(r)η =

r2

c2 Φ

d
d r

(
r2 d Φ

d r

)
−
[
`(`+ 1)− 4πGρr2

c2

]
Φ = 4πGρ

(
σ2r2

c2 η

)
C. Winfield Cowling Approximation
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Recast ES Formulation
Recast LW Formulation

Imposing SA boundary conditions, the LHS of each equation is
of S-L form which we will write as

J`ση =
r2

c2 ρΦ

L`Φ = 4πGρ
(
σ2r2

c2 η

)

Operators J`σ and L` are S-L type.
Combining equations to obtain: L`Φ = σ2F (Φ) + σ2f0
Indeed, F is symmetric as above.

C. Winfield Cowling Approximation
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Recast ES Formulation
Recast LW Formulation

Recast LW

Now set N = 0 in the LW system, (1)(2)(3)

d u
d r

=
g
c2 u +

[
`(`+ 1)

σ2 − r2

c2

]
y +

`(`+ 1)

σ2 Φ (10)

d y
d r

=
σ2

r2 u − d Φ

d r
(11)

d
d r

(
r2 d Φ

d r

)
− `(`+ 1)Φ = 4πG

ρr2

c2 y (12)

C. Winfield Cowling Approximation
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Recast ES Formulation
Recast LW Formulation

Change Variables and Parameters

And, setting v def
= 1

r u, ζ2 def
= `(`+ 1) and σ2 def

= zζ, equations (10)
and (11) become

d v
d r

=

(
g
c2 −

1
r

)
v +

[
ζ

zr
− r

c2

]
y +

ζ

zr
Φ

d y
d r

=
ζz
r

v − d Φ

d r

respectively.

C. Winfield Cowling Approximation
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Recast ES Formulation
Recast LW Formulation

LW in Partial Matrix Form

We then form a system of equations in matrix form
d
d r Y = ζAY + G where

Y =

[
v
y

]
, G =

[ ζ
zr Φ

−d Φ
d r

]
Then, A = A0 + 1

ζA1 for

A0 =
1
r

[
0 1

z
z 0

]
and A1 =

[
rg−c2

rc2 − r
c2

0 0

]

Much of the analysis methods for ES will also be applied here.

C. Winfield Cowling Approximation



Intro and Motivation
Main Tools

Adiabatic Equilibrium
Results

Summary and Outlook
Appendix

Various Newtonian Results
Application to Relativistic Pulsation

ES Results: Large `, Bounded σ

For sufficiently large `, there results

||Φp|| ≤
2σ2

γ
||f0|| ≤ σ2 Const .

γ
||η0||

Indeed, ||Φp|| = O(`−2) as `→∞
General idea: Φ ≈ Φ0 in norm for large `
In turn, Φ ≈ 0 verifies Cowling.

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

Large σ; Matrix Form

We apply asymptotic estimates wrt large σ

Change of variables w def
= ρσ−1u to recast (8) & (9)

Leads to non-homogeneous system of the form
~Y ′ = σA0

~Y + σ−1A2 + σ−1~f
Apply asymptotic methods together with main estimate
Check calculations via Mathematica using method related
to [W]. (See Appendix.)

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

Insert Asymptotics

We arrive at a particular solution satisfying

ηp =

√
c(r)

σr
√
ρ(r)

sin(σθ(r))

∫ r

a
t

√
ρ(t)
c3(t)

cos(σθ(t))Φ(t) dt+

√
c(r)

σr
√
ρ(r)

cos(σθ(r))

∫ b

r
t

√
ρ(t)
c3(t)

sin(σθ(t))Φ(t) dt + O(σ−3)

def
= σ−1W(Φ) + O(σ−3)

for θ(r)
def
=
∫ r 1

c(r) dr

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

Sharper Estimate

We can sharpen the estimate if a symmetric F can be found:
r2ρ
c2 W is symmetric

γ ≥ α and α = O(σ2) as σ → +∞
σ2

γ = O(1)

Obtain
||Φp|| ≤ C1

1
σγ

+ C2||η0||

with γ−1 = O(σ−2)

Since θ′ is positive on [a,b], we find ||η0|| = O(σ−1)

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

LW: ` and σ2 Large but Comparable.

We find a particular y with estimates uniform r and ζ: yp =

1
2

[r ζ−1/2eI
−(r)

∫ r

a
Φ(t)(t−ζ+1/2e−I

−(t))′dt+

r−ζ−1/2eI
+(r)

∫ b

r
Φ(t)(tζ+1/2e−I

+(t))′dt ]− Φ(r) + O(ζ−2)

(as ζ → +∞) for I±(r)
def
=
∫ g±zr

c2 dr , respectively.

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

Finding a Symmetric Operator

We notice that if z r
c2 ,

ρ′

ρ are small (say z small and ln ρ slowly
varying) compared to 1

r , then yp can be written as

yp =

∫ b

a
W (r , t)Φ(t)dt − Φ(r) + εO(ζ−1) + O(ζ−2)

where W (r , t) is a symmetric kernel.
Here, ε is small if I± and their derivatives are uniformly small.

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

Case for Sharper Estimates

Then,
Consider

ρr2

c2 =
ρ(r0)r2

0
c2(r0)

+ O(|r − r0|)

equation (6) becomes of the familiar general form

LΦ = F (Φ) + f0

resulting in ||Φp|| ≤ 1
γ

(
C1 + C2(ζ−1) + C3||η0||

)
with γ−1 = O(ζ−2).

C1 is small if ρr2

c2 is slowly varying on (a,b).

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

A Relativistic Pulsation Model

Taking from Lindblom, Mendell, Ipser [LMI]: Regge-Wheeler
guage whereby the metric perturbation is given by

(gab + δgab)dxadxb =

−eν(1−H0Y m
` eiσt )dt2 +2iH1Y m

` eiσtdt dr +eλ(1−H0Y m
` eiσt )dr2

+r2(1− KY m
` eiσt )(dθ2 + sin2 θdφ2)

Barotropic (Eulerian) perturbations

δρ =
dρ
dP

δP Y `
meiσt

Speed of light and G equal to 1, even parity

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

H1 and K expressed in terms of H0 and δU = δP
ρ+P + H0/2

Transformation involved generally may have singularities
Consider weak field and slow rotation.

δU ′′ +
(

2
r
− ν ′

2
d ρ
dP

+ v1

)
δU ′ +

[
σ2

eν
d ρ
dP
− `(`+ 1)

r2 + v2

]
eλδU

= v3H ′0 +

[
σ2

2eν
d ρ
dP

+ v4

]
eλH0;

H ′′0 +

(
2
r

+ η1

)
H ′0 +

[
σ2

eν
− `(`+ 1)

r2 + 4π(P + ρ)
d ρ
dP

+ η2

]
eλH0

= η3δU ′ +
[
8π(P + ρ)

d ρ
dP

+ η4

]
eλδU

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

M
R , σ,

P
ρ < ε << 1

Replace H0 = 2Φ and δU = 2σ2η

Modulo O(ε): ν ′ = −2P′
ρ , P ′ = −ρg, dρ

dP = 1/c2

vj = ηj = O(ε)

L`Φ + (v1 + O(ε))Φ′ + (v2 + O(ε))Φ = v3η
′ + (

4πσ2r2ρ

c2 + v4 + O(ε))η

J`η + (η1 + O(ε))η′ + (η2 + O(ε))η = η3Φ′ + (
r2ρ

c2 + η4 + O(ε))Φ

C. Winfield Cowling Approximation
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Various Newtonian Results
Application to Relativistic Pulsation

ES Formulation to Order ε

Integrating factors ev1 r2

ρ and eη1 r2

ρ respectively yield

J ]η = (
r2ρ

c2 + O(ε))Φ + O(ε)Φ′

L]Φ = (4πσ2 r2ρ

c2 + O(ε))η + O(ε)η′

to form
L]Φ = σ2F ](Φ) + σ2f0

with L] S-L, F ] symmetric, and ||f0|| ≤ C||η0||+ O(ε)||Φ||
Likewise,

||Φ|| ≤ σ2Const
γ

||η0||

C. Winfield Cowling Approximation
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Summary

The Cowling approximation appears to be verified under
certain conditions in the case of adiabatic equilibrium.
We find particular Φp small in norm for large degree
compared to certain other homogeneous dependent
variables.
Analysis can apply to relativistic pulsation if approximately
Newtonian.
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Outlook

Continuation:
Search for failures of Cowling approximation: Use method
in reverse to find Φp relatively large.
Extend to cases of stable equilibrium N2 > 0 (against
convection) - perhaps a perturbation of present case.
What if eigenvalues are nested?
Study spectral distance and resulting estimates as they
depend on length of interval (a,b).
Involve various order-of-magnitude estimates of physical
quantities: Determine practicalities of method.
Some non-linear pulsation models may perhaps be
investigated by further application of results of [A].

C. Winfield Cowling Approximation
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Below are Mathematica works involving is asymptotic estimates
used.
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Asymptotics for Large parameter in a 
Newtonian Stellar Pulsation Model 1: 

We develop asymptotic estimates for a system of the form

Y'[t] = ρ0 Y + 1 Y + ρ-1 0 Y2

for large real parameter ρ. The matrices in this case are given:

In[261]:= 0 = t^-1 * 0, 1  z, {z, 0};

MatrixForm[%]

Out[262]//MatrixForm=

0 1

t z
z

t
0

In[263]:= 1 = t * g[t] - c[t]^2  t * c[t]^2, -t  c[t]^2, {0, 0};

MatrixForm[%]

Out[264]//MatrixForm=

-c[t]2+t g[t]

t c[t]2
- t

c[t]2

0 0

In[265]:= 2 = {{0, 0}, {0, 0}};

MatrixForm[%]

Out[266]//MatrixForm=

 0 0
0 0



We now diagonalize the leading matrix and convert the differential system to the form 

X' = ρA0 X + A1 X + ρ-1 A2 X for Y = PX.

In[267]:= {P, A0} = JordanDecomposition[0]

A1 = Inverse[P].1.P - Inverse[P].D[P, t]

A2 = Inverse[P].2.P;

Out[267]= -
1

z
,
1

z
, {1, 1}, -

1

t
, 0, 0,

1

t


Out[268]= 
t z

2 c[t]2
+
-c[t]2 + t g[t]

2 t c[t]2
,

t z

2 c[t]2
-
-c[t]2 + t g[t]

2 t c[t]2
,

-
t z

2 c[t]2
-
-c[t]2 + t g[t]

2 t c[t]2
, -

t z

2 c[t]2
+
-c[t]2 + t g[t]

2 t c[t]2


Our goal is to follow [CL] to develop asymptotic estimates for a fundamental solution M for the  in the 
form

ℱ = ⅇρQ0+Q1 I + ρ-1 P1 + ρ-2 P1



The matrices in the exponent are diagonal where none of the Q’s or P’s depend on parameter ρ. The 
procedure, broadly speaking, is to solve 
the differential equation formally in equating terms of formal series in the parameter ρ in substituting 
into the asymptotic expression into the 
differential equation: Off-diagonal terms (Offdiag[]) and on-diagonal (Ondiag[]) terms for the P’s are 
solve separately.  To do this we produce matrices with undetermined coefficients and solve for them 
either via Solve[] or DSolve[] and substitute the solutions accordingly. We will impose a condition at 
t = 1 in our integration steps. 

In[270]:= Pmtc[n_] := Array[Pels, {4, 2, 2}][[n]]

Pmtc0 = IdentityMatrix[2]

Qpmtx[n_] := DiagonalMatrix[Array[Qprm, {2, 1, 2}][[n]][[1]]]

Offdiag[a_] := a - DiagonalMatrix[Diagonal[a]]

Ondiag[a_] := DiagonalMatrix[Diagonal[a]]

Out[271]= {{1, 0}, {0, 1}}

We solve the off-diagonal terms of P1 and the Q0 terms:

In[275]:= Q0 = Integrate[A0, t]

LHS0 = Pmtc0.Qpmtx[1] + Pmtc[1].A0;

RHS0 = A0.Pmtc[1] + A1.Pmtc0;

sol1 = Solve[{Offdiag[LHS0] ⩵ Offdiag[RHS0]},

Complement[Flatten[Pmtc[1]], Diagonal[Pmtc[1]]]];

NewP1els[i_, j_] := If[i ≠ j, Pmtc[1][[i, j]] //. sol1[[1]], Pmtc[1][[i, j]][t]];

NewPmtx = Array[NewP1els, {2, 2}]

SolQ1 = Solve[Ondiag[LHS0] ⩵ Ondiag[RHS0], Diagonal[Qpmtx[1]]]

NewQmtx1 = Qpmtx[1] //. SolQ1[[1]];

Q1 = Integrate[NewQmtx1, t]

Out[275]= {{-Log[t], 0}, {0, Log[t]}}

Out[280]= Pels[1, 1, 1][t],
t2 z + c[t]2 - t g[t]

4 c[t]2
, 

t2 z - c[t]2 + t g[t]

4 c[t]2
, Pels[1, 2, 2][t]

Out[281]= Qprm[1, 1, 1] →
t2 z - c[t]2 + t g[t]

2 t c[t]2
, Qprm[1, 1, 2] →

-t2 z - c[t]2 + t g[t]

2 t c[t]2


Out[283]= 
1

2

t2 z - c[t]2 + t g[t]

t c[t]2
ⅆt, 0, 0,

1

2


-t2 z - c[t]2 + t g[t]

t c[t]2
ⅆt

We now complete P1and solve the off-diagonal terms for P2:
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In[284]:= LHS1 = D[NewPmtx, t] + NewPmtx.NewQmtx1 + Pmtc[2].A0;

RHS1 = A1.NewPmtx + A0.Pmtc[2] + A2;

eqn1 = Simplify[Diagonal[LHS1] - Diagonal[RHS1]];

initvals = Diagonal[NewPmtx] //. t → 1;

sol1b = DSolve[{eqn1 ⩵ {0, 0}, initvals ⩵ {0, 0}}, Diagonal[NewPmtx], t];

P1 = NewPmtx //. Flatten[sol1b]

Sol2 = Solve[Offdiag[LHS1] ⩵ Offdiag[RHS1],

Complement[Flatten[Pmtc[2]], Diagonal[Pmtc[2]]]] //. sol1b[[1]] //. sol1[[1]];

NewP1els2[i_, j_] := If[i ≠ j, Pmtc[2][[i, j]] //. Flatten[Sol2], Pmtc[2][[i, j]][t]];

NewPmtx2 = Array[NewP1els2, {2, 2}];

Out[289]= 
1

t -c[K[1]]4 + 2 c[K[1]]2 g[K[1]] × K[1] - g[K[1]]2 K[1]2 + z2 K[1]4

8 c[K[1]]4 K[1]
ⅆK[1],

t2 z + c[t]2 - t g[t]

4 c[t]2
, 

t2 z - c[t]2 + t g[t]

4 c[t]2
,


1

t c[K[2]]4 - 2 c[K[2]]2 g[K[2]] × K[2] + g[K[2]]2 K[2]2 - z2 K[2]4

8 c[K[2]]4 K[2]
ⅆK[2]

We complete P2 as we find the diagonal terms. We have introduced a matrix P3 but we do not compute 
any of the since any terms involve them on the diagonals cancel from the equation.

In[293]:= LHS2 = D[NewPmtx2, t] + NewPmtx2.D[Q1, t] + Pmtc[3].A0;

RHS2 = A1.NewPmtx2 + A0.Pmtc[3] + A2.P1;

eqn2 = Simplify[Diagonal[LHS2] - Diagonal[RHS2]];

initvals2 = Diagonal[NewPmtx2] //. t → 1;

sol2b = DSolve[{eqn2 ⩵ {0, 0}, initvals2 ⩵ {0, 0}}, Diagonal[NewPmtx2], t];

P2 = NewPmtx2 //. Flatten[sol2b];

As a test of our work thus far, we substitute the expression into the derived equation. The difference of 
the two sides should be of order O(ρ-2) 

In[299]:= Formal = Pmtc0 + ρ^-1 P1 + ρ^-2 P2.MatrixExp[ρ * Q0 + Q1];

SeriesSimplifyD[Formal, t] - ρ * A0 + A1 + ρ^-1 A2.Formal, {ρ, Infinity, 1}

SeriesSimplifyD[Formal, t] - ρ * A0 + A1 + ρ^-1 A2.Formal, ρ → 0;

Out[300]= 0, ⅇ
1

2
Integrate-

1

t
+

-t z+gt

ct2
,t,Assumptions→Re[ρ]>4096&&-

1

4096
<Im[ρ]<

1

4096
+Log[t] ρ-Log[t]+O

1

ρ

2

O

1

ρ

2
,

ⅇ
1

2
Integrate-

1

t
+
t z+gt

ct2
,t,Assumptions→Re[ρ]>4096&&-

1

4096
<Im[ρ]<

1

4096
+-2 Log[t] ρ-2 Log[t]+O

1

ρ

2


O
1

ρ

2
, 0

We also test the formal solution by verifying that coefficients  canc ρ -k in the differential equation for 
k = 1, 2 which involve the solved terms.

In[302]:= TestLHS1 = D[P1, t] + P1.D[Q1, t] + P2.A0;

TestRHS1 = A1.P1 + A0.P2 + A2;

Testeqn1 = Simplify[TestLHS1 - TestRHS1]

Out[304]= {{0, 0}, {0, 0}}
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In[305]:= P3 = Pmtc[3];

TestLHS2 = Ondiag[D[P2, t] + P2.D[Q1, t] + P3.D[Q0, t]];

TestRHS2 = Ondiag[A1.P2 + A0.P3 + A2.P1];

Simplify[TestLHS2 - TestRHS2]

Out[308]= {{0, 0}, {0, 0}}

We obtain our asymptotic estimate Pℱ for the original system and list the corresponding exponential 
terms along with correction terms  PPi:

In[309]:= Asympt = P.Formal;

In[310]:= Coefficient[Asympt, ρ, 0]

Coefficient[Asympt, ρ, -1]  Coefficient[Asympt, ρ, 0];

Coefficient[Asympt, ρ, -2]  Coefficient[Asympt, ρ, 0];

Out[310]= -
ⅇ

1

2 
t2 z-ct2+t gt

t ct2
ⅆt
t-ρ

z
,

ⅇ
1

2 
-t2 z-ct2+t gt

t ct2
ⅆt
tρ

z
, ⅇ

1

2 
t2 z-ct2+t gt

t ct2
ⅆt
t-ρ, ⅇ

1

2 
-t2 z-ct2+t gt

t ct2
ⅆt
tρ
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Asymptotics for Large parameter In a 
Newtonian Stellar Pulsation Model 2: 

We develop asymptotic estimates for a system of the form

Y'[t] = σ 0 Y + 1 Y + σ-1 2 Y

for large real parameter σ. The matrices in this case are given:

In[209]:= 0 = 0, -ρ[t] t^2  c[t]^2, 1  ρ[t] t^2, 0;

MatrixForm[%]

Out[210]//MatrixForm=

0 - t2 ρ[t]

c[t]2

1

t2 ρ[t]
0

In[211]:= 1 = {{0, 0}, {0, 0}};

MatrixForm[%]

Out[212]//MatrixForm=

 0 0
0 0



In[213]:= 2 = {{0, ρ[t] * L}, {0, 0}};

MatrixForm[%]

Out[214]//MatrixForm=

 0 L ρ[t]
0 0



We now diagonalize the leading matrix and convert the differential system to the form

X' = σA0 X + A1 X + σ-1 A2 X

for Y = PX.

In[215]:= {P, A0} = JordanDecomposition[0]

A1 = Inverse[P].1.P - Inverse[P].D[P, t];

A2 = Inverse[P].2.P;

Out[215]= -
ⅈ t2 ρ[t]

c[t]
,

ⅈ t2 ρ[t]

c[t]
, {1, 1}, -

ⅈ

c[t]
, 0, 0,

ⅈ

c[t]


Our goal is to follow [CL] to develop asymptotic estimates for a fundamental solution M for the  in the 
form

ℱ = ⅇσQ0+Q1 I + σ-1 P1 + σ-2 P2

The matrices in the exponent are diagonal where none of the Q’s or P’s depend on parameter σ. The 
procedure is, broadly speaking, is to solve 
the differential equation formally in equating terms of formal series in the parameter σ in substituting 



into the asymptotic expression into the 
differential equation: Off-diagonal terms (Offdiag[]) and on-diagonal (Ondiag[]) terms for the P’s are 
solve separately.  To do this we produce matrices with
undetermined coefficients and solve for them either via Solve[] or DSolve[] and substitute the solutions 
accordingly. We will impose a condition at t = 1 in our
integration steps. 

In[218]:= Pmtc[n_] := Array[Pels, {4, 2, 2}][[n]]

Pmtc0 = IdentityMatrix[2]

Qpmtx[n_] := DiagonalMatrix[Array[Qprm, {2, 1, 2}][[n]][[1]]]

Offdiag[a_] := a - DiagonalMatrix[Diagonal[a]]

Ondiag[a_] := DiagonalMatrix[Diagonal[a]]

Out[219]= {{1, 0}, {0, 1}}

We solve the off-diagonal terms of P1 and the Q0 terms:

In[223]:= Q0 = Integrate[A0, t]

LHS0 = Pmtc0.Qpmtx[1] + Pmtc[1].A0;

RHS0 = A0.Pmtc[1] + A1.Pmtc0;

sol1 = Solve[{Offdiag[LHS0] ⩵ Offdiag[RHS0]},

Complement[Flatten[Pmtc[1]], Diagonal[Pmtc[1]]]];

NewP1els[i_, j_] := If[i ≠ j, Pmtc[1][[i, j]] //. sol1[[1]], Pmtc[1][[i, j]][t]];

NewPmtx = Array[NewP1els, {2, 2}]

SolQ1 = Solve[Ondiag[LHS0] ⩵ Ondiag[RHS0], Diagonal[Qpmtx[1]]]

NewQmtx1 = Qpmtx[1] //. SolQ1[[1]];

Q1 = Integrate[NewQmtx1, t]

Out[223]= -ⅈ 
1

c[t]
ⅆt, 0, 0, ⅈ 

1

c[t]
ⅆt

Out[228]= Pels[1, 1, 1][t],
ⅈ -2 c[t] × ρ[t] + t ρ[t] c′[t] - t c[t] ρ′[t]

4 t ρ[t]
,


ⅈ 2 c[t] × ρ[t] - t ρ[t] c′[t] + t c[t] ρ′[t]

4 t ρ[t]
, Pels[1, 2, 2][t]

Out[229]= Qprm[1, 1, 1] →
-2 c[t] × ρ[t] + t ρ[t] c′[t] - t c[t] ρ′[t]

2 t c[t] × ρ[t]
,

Qprm[1, 1, 2] →
-2 c[t] × ρ[t] + t ρ[t] c′[t] - t c[t] ρ′[t]

2 t c[t] × ρ[t]


Out[231]= -Log[t] +
1

2
Log[c[t]] -

1

2
Log[ρ[t]], 0, 0, -Log[t] +

1

2
Log[c[t]] -

1

2
Log[ρ[t]]

We now complete P1and solve the off-diagonal terms for P2:
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In[232]:= LHS1 = D[NewPmtx, t] + NewPmtx.NewQmtx1 + Pmtc[2].A0;

RHS1 = A1.NewPmtx + A0.Pmtc[2] + A2;

eqn1 = Simplify[Diagonal[LHS1] - Diagonal[RHS1]];

initvals = Diagonal[NewPmtx] //. t → 1;

sol1b = DSolve[{eqn1 ⩵ {0, 0}, initvals ⩵ {0, 0}}, Diagonal[NewPmtx], t];

P1 = NewPmtx //. Flatten[sol1b]

Sol2 = Solve[Offdiag[LHS1] ⩵ Offdiag[RHS1],

Complement[Flatten[Pmtc[2]], Diagonal[Pmtc[2]]]] //. sol1b[[1]] //. sol1[[1]];

NewP1els2[i_, j_] := If[i ≠ j, Pmtc[2][[i, j]] //. Flatten[Sol2], Pmtc[2][[i, j]][t]];

NewPmtx2 = Array[NewP1els2, {2, 2}];

Out[237]= 
1

t

ⅈ 4 c[K[1]]2 ρ[K[1]]2 + 4 L c[K[1]]2 ρ[K[1]]2 - 4 c[K[1]] × K[1] ρ[K[1]]2 c′[K[1]] +

K[1]2 ρ[K[1]]2 c′[K[1]]2 + 4 c[K[1]]2 K[1] × ρ[K[1]] ρ′[K[1]] -

2 c[K[1]] K[1]2 ρ[K[1]] c′[K[1]] ρ′[K[1]] + c[K[1]]2 K[1]2 ρ′[K[1]]2 

8 c[K[1]] K[1]2 ρ[K[1]]2 ⅆK[1],
ⅈ -2 c[t] × ρ[t] + t ρ[t] c′[t] - t c[t] ρ′[t]

4 t ρ[t]
,


ⅈ 2 c[t] × ρ[t] - t ρ[t] c′[t] + t c[t] ρ′[t]

4 t ρ[t]
,


1

t

ⅈ -4 c[K[2]]2 ρ[K[2]]2 - 4 L c[K[2]]2 ρ[K[2]]2 + 4 c[K[2]] × K[2] ρ[K[2]]2 c′[K[2]] -

K[2]2 ρ[K[2]]2 c′[K[2]]2 - 4 c[K[2]]2 K[2] × ρ[K[2]] ρ′[K[2]] +

2 c[K[2]] K[2]2 ρ[K[2]] c′[K[2]] ρ′[K[2]] - c[K[2]]2 K[2]2 ρ′[K[2]]2 

8 c[K[2]] K[2]2 ρ[K[2]]2 ⅆK[2]

We complete P2 as we find the diagonal terms. We have introduced a matrix P3 but we do not compute 
any of the since any terms involve them on the diagonals cancel from the equation.

In[241]:= LHS2 = D[NewPmtx2, t] + NewPmtx2.D[Q1, t] + Pmtc[3].A0;

RHS2 = A1.NewPmtx2 + A0.Pmtc[3] + A2.P1;

eqn2 = Simplify[Diagonal[LHS2] - Diagonal[RHS2]];

initvals2 = Diagonal[NewPmtx2] //. t → 1;

sol2b = DSolve[{eqn2 ⩵ {0, 0}, initvals2 ⩵ {0, 0}}, Diagonal[NewPmtx2], t];

P2 = NewPmtx2 //. Flatten[sol2b];

As a test of our work thus far, we substitute the expression into the derived equation. The difference of 
the two sides should be of order O(σ-2) 

In[247]:= Formal = Pmtc0 + σ^-1 P1 + σ^-2 P2.MatrixExp[σ * Q0 + Q1];

SeriesSimplifyD[Formal, t] - σ * A0 + A1 + σ^-1 A2.Formal, {σ, Infinity, 1}

SeriesSimplifyD[Formal, t] - σ * A0 + A1 + σ^-1 A2.Formal, σ → 0;

Out[248]= ⅇ
Integrate

1

ct
,t,Assumptions→Re[σ]>4096&&-

1

4096
<Im[σ]<

1

4096
 -ⅈ σ+O

1

σ

2

O

1

σ

3
,

ⅇ
Integrate

1

ct
,t,Assumptions→Re[σ]>4096&&-

1

4096
<Im[σ]<

1

4096
 ⅈ σ+O

1

σ

2

O

1

σ

2
,

ⅇ
Integrate

1

ct
,t,Assumptions→Re[σ]>4096&&-

1

4096
<Im[σ]<

1

4096
 -ⅈ σ+O

1

σ

2

O

1

σ

2
,

ⅇ
Integrate

1

ct
,t,Assumptions→Re[σ]>4096&&-

1

4096
<Im[σ]<

1

4096
 ⅈ σ+O

1

σ

2

O

1

σ

3

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We also test the formal solution by verifying that term cancel in powers of i - 1 th of σ  in the differential 
equation for i = 1, 2 which involve the solved terms.

In[250]:= TestLHS1 = D[P1, t] + P1.D[Q1, t] + P2.A0;

TestRHS1 = A1.P1 + A0.P2 + A2;

Testeqn1 = Simplify[TestLHS1 - TestRHS1]

Out[252]= {{0, 0}, {0, 0}}

In[253]:= P3 = Pmtc[3];

TestLHS2 = Ondiag[D[P2, t] + P2.D[Q1, t] + P3.D[Q0, t]];

TestRHS2 = Ondiag[A1.P2 + A0.P3 + A2.P1];

Simplify[TestLHS2 - TestRHS2]

Out[256]= {{0, 0}, {0, 0}}

We obtain our asymptotic estimate Pℱ for the original system and list the corresponding exponential 
terms along with correction terms  PPi:

In[257]:= Asympt = P.Formal;

In[258]:= Coefficient[Asympt, σ, 0]

Coefficient[Asympt, σ, -1]  Coefficient[Asympt, σ, 0];

Coefficient[Asympt, σ, -2]  Coefficient[Asympt, σ, 0];

Out[258]= -
ⅈ ⅇ

-ⅈ σ 
1

ct
ⅆt
t ρ[t]

c[t]
,

ⅈ ⅇ
ⅈ σ 

1

ct
ⅆt
t ρ[t]

c[t]
, 

ⅇ
-ⅈ σ 

1

ct
ⅆt

c[t]

t ρ[t]
,

ⅇ
ⅈ σ 

1

ct
ⅆt

c[t]

t ρ[t]

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