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We derive the Thermal Energy Equation 
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To avoid the ad-hoc approaches of various referenences, let us derive energy/pressure relationships for ideal (classical) and photon

gases systematically by using the following formula for pressure P

P = -

¶ U

¶ V
s,N ,T

IIdeal gasM; P = -

¶ U

¶ V
s,T

IPhoton gasM.

Here U  is the internal energy, V is the volume, N  is the number of particles (where appropriate), T  is the temperature, and s is the entropy of

the ensemble (here Σ, N  and T  are fixed in the definition of pressure p).  

We can apply this formula as we use implicit differentiation on the entropy formula of each model.  Let us start with the photon gas:  Here

photon number is not conserved, but we count quantum states according to Plank distribution (cf. Chapt 9 of Reed and Roy): We will show

that  

(2)s = FHU V
1�3L

for some strictly increasing, differentiable function F.  We will supply details since the reference is out of print and since we would prefer

additional rigorous arguements to ensure differentiability.  If we find the internal energy as a function of T ,  we apply the thermal identityHd ULV = T d s

s = à
0

U 1

T HΖL â Ζ

to find formula for s. Here U0 is the internal energy   We arrive at such a formula for T  by the Plank distribution 

U =

E

ãE�T - 1

Where E = ÑΩ is the energy of a single photon mode. We find  s to be given by an improper integral which we check:
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Photon Pressure vs. Volume: The Bohr-Sommerfeld Quantization Rule

We begin with the formal (semi-classical) Hamiltonian for  a photon:

H = c p

where p =   p¤,  p is a photon’s momentum and c is the (constant) speed of light in a vacuum.  We note that the Hamiltonian does not depend

on the generalized coordinates p, so that contours of constant energy in phase space will lie in regions of the form B � Sr where S
p
�  denotes a

sphere of radius p
�
 in momentum space, ie. Sr= 9 p : p = p

� =. We therefore choose to use spherical coordinates Hr , Φ, Θ) with position and

momentum variables q
Ó
, p given by 
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where the Θ’s and Φ’s are the respective azimuthal and polar angles for arbitrary but fixed axes. Standard volume forms in the position and

momentum spaces are (up to orientation)
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The various components of p and q
Ó
 are now considered to be conjugate variables which are coupled along contours in phase space as we apply

the Bohr-Sommerfeld Rule along with Stoke’s Theorem (cf. Landau, Lifshitz Vol. 3, § 45). We parametrize contour curves Ca : a = 1, 2, 3, using

spherical components Iqr , qΦ, qΘM and I pr , pΦ, pΘM, along with 1 forms accordingly:
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The value of the countour integrals depend on the indicated variables as do the integer values N1, N2, N3  which have finitely many jump

discontinuities as functions of these variables. We will suppose, for simplicity, that J3 is continuous at I p
�
, R). 

We choose open intervals Ia, b 
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= 8 h HN3 + 1 � 2L â
i , j ,k,l

hIN1,i , j + 1 � 2M × h IN2,i , j ,k,l + 1 � 2M

= N h
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for some positive integer N . We will replace p
~

 by p to find
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 Therefore there is a positive constant C   such that 

(4)p
3 = C � V

We finish this section with some comments on the interpretation of our results in regards to pressure. From §12 LL Statistical Physics I

(page 42) that pressure is determined by external perameters in the sense that thermal quantities involving pressure and volume do not depend

on the canonical variables used to compute (5) - the implied force is averaged out over the entire surface bdyHV L. Moreover, applying Pascal’s

Law, pressure may be measured in an outward normal direction on a spherical surface where differential changes in spatial volume result from a

differential change d R over a fixed differential solid angle W. We therefore write 

(5)d V =

¶ V

¶ R

d R = W R
2

d R,

whereby the derivative is well defined at any point of our surface. We may adjust the constant C  of equation so that (3) holds on any volume

element of the form (5) so that we have a clear relationships among P, V  and p and their various differentials.

Pressure of a Photon Gas

 It is now clear that p µ V -1�3 in this model. Furthermore, since E = c p for a photon, it is clear also that E µ V -1�3 so that there is a

constant K so that 
U

E
= K U V 1�3.  For our purposes, we only needed to know that the integral (3) converges as a smooth function of U � E

and to ensure that (2) holds. We obtain from the chain rule

0 = F'HU V
1�3L 1

3
V

-2�3
U +

¶ U

¶ V
s,T

V
1�3 .

Since F' > 0 , we have

1

3
V

-2�3
U +

¶ U

¶ V
s,T

V
1�3 = 0

1

3
V

-2�3
U = P V

1�3

so that P = U � H3 V L

Pressure of an Ideal Gas 

Let us find a U, T, V relationship for the ideal gas by similar means:  By 6-34 of Kittel, Kroemer (a form of the Sackur-Tetrode

equation),  the entropy can be written in the  form

s =

3

2
N logHUL + N logHV L + f HN , T L

for some function f depending only on N and T . By the chain rule we obtain

0 =

3 N

2 U

¶ U

¶ V
s,N ,T

+

N

V

=

-3 N P

2 U

+

N

V
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so that P = 2 U � H3 V L.
The total energy U is determined by the well - known ideal gas law and the Stefan - Boltzmann law so that we obtain

U =

3

2
k T + c V T

4

P =

k N T

V

+ c T
4

The Adiabatic Exponent

For a gas with both photon and classical properties we compute

(6)G1 = Hd ln P � d ln ΡLs =

-V

P

d P

d V
s

in terms of heat capacities CP and CV . Here we will show that

(7)G1 = Χ

CP

CV

where Χ = J d ln p

d ln Ρ
N
T

= -
V

P
I d P

d V
M
T

. We note that for fixed N , we see that U = U HT , V L and P = PHT , V L with independant variables

T  and V . We use the thermodynamic identity (with constant N) which we treat as a 1-form defined on R2

d Q = T d s = dU + P dV = I¶V U + pM d V + H¶T UL d T .

To compute CP = Hd Q � d T LP we have to consider a submanifold of  R2 where P=constant as we treat V  as a function of T  and restrict our 1-

forms as indicted by subscript. (Partial symbols with subscript denote standard partial derivatives.)

CP = Hd Q � d T LP

Hd QLP = HH¶V U + PL Hd V LP + H¶T ULL Hd T LP

On such a submanifold we can compute Hd V LP by using Hd PLP = 0.

0 = Hd PLP = ¶V PHd V LP + ¶T PHd T LP

Hd V LP = -H¶T P � ¶V PL Hd T LP

CP = -H¶V U + PL H¶T V LP + ¶T U

We compute CV = Hd Q � d T LV similarly

Hd QLV = HH¶V U + PL H¶V V L + H¶T ULL Hd T LV = H¶T UL Hd T LV

CV = ¶T U

We have

CP

CV

= 1 -

H¶V U + PL H¶T V LP ¶T P

¶T U ¶V P

.

We now compute I d P

d V
M
s
 where we consider S = constant another submanifold of R2 on which V  again depends on T .

Hd PLS = H¶T PL Hd T LS + H¶V PL Hd V LS

0 = T Hd SLS = Hd U LS + PH d V LS = ¶T UHd T LS + H¶V U + PL Hd V LS
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Hd T LS = -

¶V U + ¶V P

¶T U

Hd V LS

Now we compute 

Hd PLS = H¶V PL - H¶T PL ¶V U + P

¶T U

Hd V LS

d P

d V
S

= ¶V P - H¶T PL ¶V U + P

¶T U

Since T is one of our independant variables, it is easy to compute

d P

d V
T

= ¶V P

To prove the result, we will compute the ratio
G1

Χ

G1

Χ
=

d P

d V
s

� d P

d V
T

= ¶V P - H¶T PL ¶V U + P

¶T U

� ¶V P = 1 -

H¶V U + PL H¶T V L p ¶T P

¶T U ¶V P

=

CP

CV

We note that the result does not depend on this particular gas model excpect that for dependance of U  and P  on T  and V  -  and that

¶T U , ¶V P are non-zero.

Thermal Energy Equation

With an appropriate relationship between P and T , we  want to write P as a function of Ρ and s. At this stage we are assuming, absent

of any other physical relation, that P, Ρ are independent (of each other). We expect that P and Ρ (dynamic variables) already do depend on T, s

(thermal variables); but, in an adiabatic situation, it will be convenient to express P = PHΡ, sL whereby s = constant (adiabatic and reversible

therodynamic processes). To be sure that we may change our system from independent variables P, Ρ to one of independent variables T , q, we

consider the system 

Ρ

P
=

Ρ

P HT , ΡL
We then apply the Inverse Function Theorem (or the Implicit Function Theorem). We need that the following does not vanish:

Det

¶Ρ

¶T

¶Ρ

¶Ρ

¶P

¶T

¶P

¶Ρ

=

¶Ρ

¶T

¶Ρ

¶Ρ

¶P

¶T

¶P

¶Ρ

=

¶Ρ

¶T
1

¶P

¶T
0

= -
¶P

¶T

So we are able to set T = T HP, Ρ), and P = PHΡ) (as a differentiable functions, provided

(8)
¶ PHT , sL

¶ T

¹ 0

(We abuse notation here: The function p may differ when express terms of different variables.) A typical expression for P is one of the form

(see eqn. 9)

P = C1 T Ρ + C2 T 4.

This would arrise from an equation of state for an ideal gas along with black-body radiation (cf. Section 1.17 of Astrophysical Fluid Dynamics,

Gordan Ogilvie). Since C1, C2 , Ρ are supposed to be non-negative and one C1, C2  positive, we find that (9) indeed holds.

Now, to derive the thermal energy equation we apply the Chain Rule and then use 
D s

D t
=0 to obtain

(9)
D PHΡL

D t

=

D s

D t

¶ P

¶ s

+

D Ρ

D t

¶ P

¶ Ρ
=

D Ρ

D t

¶ P

¶ Ρ
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We have, by the way, an alternate way to compute G1.  Setting u = ln pHΡL, v = ln Ρ, 

(10)G1 = J ¶ ln P

¶ ln Ρ
N

s

=

¶ u

¶ v

=

¶Ρ u

¶Ρ v

=

¶Ρ P � P

1 � Ρ
=

Ρ

P

¶ P

¶ Ρ

And, finally, we derive (1) [see also (3) of the “A Baby Hyrodynamics Model”] by (9) and (10) and by substitution:

¶ PHΡL
¶ Ρ

= G1

P

Ρ

D P

D t

= G1

P

Ρ
×

D Ρ

D t
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