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1 Introduction and General Theory

We will study the local solvability of a specific class of partial differential oper-
ators. We study those which are left-invariant on the Heisenberg group H; (i.e.
invariant under group action). Our analysis will involve the study of solutions to
certain ordinary differential equations derived from a certain representation of
these operators. Before we describe in detail the class of operators and methods
in question, let us review the definition of local solvability and make precise what
classes of functions we will consider for the proposed research. A partial differ-
ential operator with smooth coefficients (not all zero) expressed in multi-index
operator notation

L= a.(Z)03 (1.1)
|| =0
and defined for Zy € R™ will be said to be (C*°-) locally solvable if the following
hold:

Definition 1.1 For every f € C*°(R"™) there is a u € C*°(R™) and a neighbor-

hood €2 > 50 so that Lu = f holds on €, perhaps in the sense of distributions.
Moreover, L is locally solvable if it is locally solvable at every Ty

We note that no conditions are placed on the form of boundary /initial conditions
are not specified in the above definition. Some common examples of operators
which are locally solvable include all such ordinary differential operators and
all such partial differential operators with constant coefficients. Various other
classes of operators have been studied in the context of local (non-) solvability,
including operators of principle type [NT1, NT2, H62, BF], certain hyperbolic
operators [N], certain transversally elliptic operators [CR], certain classes of
second-order operators [F'S, GT], and some operators defined (left-invariant) on
the Heisenberg group, second-order or higher [M1, M2, M3, MR].

A well-known example of an operator that is not locally solvable is given by
H. Lewy [L], defined on R? can be (applying a change of variables) written as

LLeWy = az + Z(ay + l’at)



The class of operators we study is related to this operator involving the vector
fields X = 0, and Y = 0, + 20;. We find these to be left-invariant on H; as we
show as follows: Denote by Tz : R3 x R® — R3 the group action on R? given
by

Te(Z) = (x+ 2,y +y, t+t +2'y)
we find that for f € C>°(R?)

Ve(f (T (%)) = V@) o [(Tz (T))

for the vector field Vz = X or Y. Although it is possible to solve the equation
Lu = f for some functions f, we conclude that the equation cannot be solved
for some smooth f. For instance, we see [F] that Lrc,,u = f is not solvable
in any neighborhood of the origin when f is C*°(R?®) but not analytic. Some
such attempts using Mathematica differential equation solvers yield only general
homogeneous solutions.

The proposed research will be a study of the local (non-) solvability of the
following operators which, via operator notation, can be uniquely express by
polynomials P in two general non-commuting variables X = 0, and Y = 9, +
x0s. We restrict our class of polynomials P as follows:

1) P is of degree n > 2.
2) P is homogeneous in the general variables X and Y.

3) In the complex variable z, the polynomial P(iz,1) has distinct roots
{7j}}=1 with distinct real parts.

4) The complex polynomial P(iz,0) = z™.

We therefore study operators which can be written in the form

n
L=(=i)"X"+> a;YIX" + E(X,)Y)

j=1
all with complex constant coefficients a; and where E is a finite, linear combi-
nation of terms of order n all involving at least one commutator factor [X,Y].
Property 4 assures the presence of the term X™ and is convenient for our anal-
ysis which follows [C]. Property 3 may be generally be relaxed, allowing merely
distinct +y;’s, but the above suffices for our proposal. For the rest of the proposal
we will call these polynomials generic.

Most of our development will rely on results of [W2] which exploits asymp-
totic methods of [C]. Here a certain representation is analyzed by producing
asymptotic estimates which depend on the 7; and various coefficient of P. In
particular, we study solutions to £*y(u) = 0 where

LE = P(Fidy,, —u).

The set of such solutions to Ly = 0 is called the kernel, denoted by ker L. We
denote by superscript * the adjoint of an operator. We now state the main
theorem which we use to determine solvability.



Theorem 1.2 Let P be a generic polynomial. Then, the operator L = P(X,Y)
is locally solvable if and only if the kernels of (L*)* contains no Schwartz-class
(on RY) functions other than the zero function.

Recall that Schwartz class functions S(R™) are those smooth functions f for
which
(1+ 7)) 05 £ (7)

is bounded on R™ for every real a and multi-index (.
For ¢ € S(R?), using operator notation, we write

P(X,Y)p(z,y,w) =

400
271' / e~ WERD P(8,, —i(€ + nx))p(x, €, 1) dE dy.

Here we define
1 +oo ptoo
Bl &) 2 L / / (2, W) ) gy d

and oo oo
Bz, &,m) dﬁf 1 / / z,y,w) (y““’”)dydw

The operators £L*, as defined above, are related to the operator P(9,,, —i(¢+
nz)) by a change of variables as follows: Set

u*(@,n,€) = x/n £ &/ (resp.).
For ¢ € C"(R),
Py, —i(& +nw))p(u®) = P, —iln|" (|7 £ aln|'*)p(u™)  (1.2)

= ()" P(~i0y, £[n|"* (¥ — || /2)p(u*)

n|t/2
= (4)"|n|"/*P(—i0u, Fu)p(u)
= (i)"In|"*(LEp) (u*)

for 7 = 0 (resp.). According the sign changes defining £* the characteristic
roots are given by {£+; _1, respectively.

We will order the characteristic roots so that Rey; < Rev;j4; for each 1 <
j < n and describe canonical bases according to asymptotics from [C]. Since
L* are of the general class form, we will simply denote the ordinary operators
by £ and use the + superscript in association with estimates on R*

Lemma 1.3 Let £L = P(—i0, —x) for some generic P with characteristic roots
7v; as above. Then there are functions qui(x) € C*(R) defined on R x C, with
the following properties:



i) The sets {¢} (z)}2_, and {¢, (z)}7_,, form bases of ker L
i) for some complex exponents, pr(P), for0<j<n—1,1<k<n.
dJ

g Ok () = e (e 4 o(1) (13)

as x — 00, respectively;

Here we take z¥ = €!°2” with a branch of complex log including the positive
+x-axis and with the argument take to be im along the —z-axis.

Let us introduce some notation: The expression f < g means that f < Cyg
for positive constant, C, independent of = and z and f =< g means that the
ratio f/g is bounded above and below by finite, positive constants, independent
of z. Our method in using Theorem 1.2 involves a study of global behavior of
functions in ker £ for those operators arising in (1.2). We consider classes of
ordered bases qﬁki which satisfy

i _
0F S (14 [a]) e e (1)
X

for z = 0 for some real constant a. Such pairs of bases {{¢} }7_, {¢; }r_,} will
be called admissible. Here,

¢;'t+1($)
im —/———=0 1.5
o~ 55 () (4

(resp.) for each 1 < j < n and choice of + sign.
For a given operator £, admissible bases of ker £ have the following proper-
ties:

1) Given any pair of admissible bases, there is an invertible matrix A so that
o1 2

=4l
¢ 2

2) Given a pair of admissible bases {{¢; }7_;, {¢,, }7_,} and constant, n x

n, invertible, upper-triangular matrices A; and As, the bases {{d;,j}zzl,
{op }r_,} resulting from

o o7
l=A]
b b
of o
=42
&f o)

also form an admissible pair.



3) For a permutation o (on n letters) denote by I, the matrix with zero
elements except for (leading) ones in the positions (o(j),7) : 1 < j < n.
Then, there is a unique ¢ such that for some admissible pair of bases

{{w;}ZZI’ {w]:}ZZI} we Obta’in
iy v
=1

U oA
We note that on the class of invertible nxn matrices, left and right multiplication
by upper-triangular matrices induces an equivalence class of matrices: For every
matrix A there are upper-triangular matrices U and V so that UAV = I, for

some associated permutation o. Letting 0 < J < n be the least such index that
Re—v; >0V j > J, we state the following

Definition 1.4 A permutation associated with I, will be called resolving if the
following holds Vj :
o) <J = j=J

We apply the characterizations to operators L£*: Since these operators are
also of associated with some generic P, their kernel spaces have canonical bases
following the asymptotic estimates as in Lemma 1.3 but with characteristic roots
{=7j}j=1 so that (after rearrangement) there is an associated admissible pair
of bases of L* satisfying

2
¢ () S T2 (1 4 )
for x 2 0, respectively, for some real b. where are then able to characterize the
property of local solvability of operators L according to equivalence classes of
transition matrices A where
2y of

=1

n 2
for the same o associated with £. Hence, ker £* has a non-trivial S(R) function
if and only if the permutation ¢ associated with £ is not resolving.

This fact leads to the following reformulation of Theorem 1.2.

Proposition 1.5 The operator L = P(X,Y) for a generic P is locally solvable
if an only if the permutations oF associated to each of ker L* (resp.) are both
resolving.

Retaining the superscript £+ of Theorem 1.2, we note some cases for which
the determination of local solvability is immediate.

Corollary 1.6 The operator L = P(X,Y) is locally solvable if the characteris-
tic roots vy; satisfy Rey; = 0 Vj.



Corollary 1.7 The operator L = P(X,Y) in not locally solvable if one of the
following holds:

1 Revy; > 0Vj.
2 Rey; < 0Vj.

The approach of our proposed project to this class of differential equations
can be viewed in four major computational steps:

1) We compute admissible pairs of bases for each of the associated £*, or-
dered according to their asymptotic growth as x — +oc.

2) We compute the associated transition matrices A for the admissible pairs.

3) We test the general (C°°-) solvability of an operator P(X,Y") according
to the equivalence classes of the transition matrices as in Proposition 1.5.

4) Where the test shows that L is locally solvable, we provide a method of
solution - at least in a neighborhood.

With concrete methods of testing and calculation at hand in the literature,
each of these stages lend themselves to computer program development; either
in automation or in well-defined routines that users can follow using standard
techniques. More detailed outlines of such procedures are offered in the various
sections below.

Asymptotic Estimates

In order to classify and work with ordered bases {¢;t }7_1 of solutions to Ly =
0, we will need a method to compute asymptotic estimates as in Lemma 1.3
apart from calculating numerical/analytical solutions. To do this, we follow the
method as in [C]: Let £ be an operator given by

n—1
L=07+) 2" q(x)0]
=0

where the g;’s are rational functions of the form ¢; = d; + e;j2=2 + O(z™*) for
constants d;,e;. We find the characteristic roots v; by finding the roots of

n—1

Y (1) =0, (1.6)

=0



Now to find the exponents p;, we set

1 1 .. 1
—nw —T . Y
So = ) ) )
(—mz)* ™t (=yex)™t L (=)t
0 0
1 :
61 = 3 :
x 0 0
(—)"eq (—z)'en—1

Then, these exponents are given by
p; =[Sy €150 — S5 ' Sol.5 (1.7)

where [ |; ; denotes the j-th diagonal element and / denote derivative w.r.t z.
As an example, let us consider second-order (n = 2) operator of this class

L= 0?4 azxd, + 22(b+ c/x?)

for real (say) a,b with a® > 4b. We compute 7 o = 9V =1b ”52_‘“’ (resp.)

1 1 0 0 0 0
So = Sh = & =
0 (_711' _’Y2$> 0 (—71 —’Yz) 1 <—c O> ’

-1 1 (—721‘ —1)
Sg =——m—
zn—) \mz 1
Y1—¢C —Y2tc
P1 = y P2 =

Y2 — M T2 =M
with 71 < 2. One expects similar results [W2] where we allow for distinct roots
v; with some with equal real parts.

We seek to automate the above procedure for such operators and we expect
to complete such work within the first six months of the project. We will provide
algorithms where a user can identity an operator by coeflicients a, b, ¢ whereby
characteristic roots will automatically calculated. We will further develop means
with which to automatically identify and determine local solvability in those
cases where local solvability can immediately be determined - such as those as
in the cases of Corollaries 1.6 and 1.7 for instance. Similar procedures will be
developed for higher-order cases n > 2. Although the computations above are
among the initials steps of the proposed project, these procedures alone will
lead to publications on asymptotic methods of ordinary differential equations
accessible to graduate and undergraduate student in subject areas involving
applications of analysis. In particular, tutorial exercises will be developed for
students to compare solutions of related ordinary differential equations to those
asymptotic estimates e~ % 25




Characterizations of Bases: Case n = 2

As a demonstration of our proposed methods we apply our test to second-order
differential operators whose local (non-) solvability is known. We will examine
the case

L=-X?-Y?+i)\X,Y] (1.8)

for constant A. This case has been studied for constant A [W2] and non-constant
A = A(z) cases [CK, CKM]. The associated ordinary differential operators are
given by

LE =02 — 22 F X\ (resp.). (1.9)

We have from the well-known Hermite differential equation [CL] that ker £*
contains functions of class S(R) if and only if FA = 2[4+ 1 (resp.) for some
[ € N. Therefore, L is locally solvable if and only if £\ # 2[+ 1 for any such [.

Let us demonstrate a more naive approach in order to demonstrate out
computational methods. We see that Mathematica software provides a general
solution to the equation

' (z) — 2?y(x) = My(x)

Let us restrict our case for now to that of A > 0. The general solution is given
in terms of parabolic cylinder functions by [AS] (see equations 19.4.3, 19.8.1,
19.8.2)

y=C1V(A/2,2) + CoU(N/2,x) (1.10)

where
wV(a,z) = F(% + a)[sin(ma)U(a, z) + Ula, —x)]

We note that in this case —y; 2 = +1,—1 and p; 2 = _1Q+A7 —% (resp.) We

naively test the bases functions U, V for in order to demonstrate how to construct
admissible bases: Consider the following limits (which can be computed by
Mathematica)

2,v2 2,v2
lim w —0 lim w -1 (1.11)
z——4oo  eT’/2xP zS+too  e~T?/2gp2

i VA2 V20) \/5 im  Y/2V20)
T z5too e~/ 2Pz

z—+oo  eT?/2gp1

Such a test as above can be implemented by Mathematica
At this point we see from the limits above and verify by [AS] that

V(\/2,V2z) =< ™ /2
U(N/2,V2x) = e 2P
for sufficiently large x > 0, so that we can assign

of (z) = V(N/2,v2z), ¢3(z) =U(N/2,V22)



In order to complete our construction we need to obtain a basis with such
distinct estimates for large < 0. We note that from 19.8.3 [AS] and (1.11)

oF . . oF 2
lim ¢f1((_xa)c) = sin(Ar/2), IEIPOO em%iz?m = \/251n(/\7r/2), (1.12)
+ +
. s(x) o . oy (x) ow
zEIPm ¢ir(_x) - F(/\22)7 zll,IPoo e—$2/2|x|p2 - F()\22)

For +X not an odd integer, let us choose

o1 (z) = ¢35 (z)
and set
¢y =Cof + ¢

and choose (uniquely) C' so that ¢5 (x) < e~ /2|z|P2 as for large < 0. The
existence of such a C' is assured by Theorem 1.2. From the limits above, it is
not difficult to show that

_ wsin(mA/2) def
regh

()= (e, ) (@) -

Here it is not difficult to show that the transition matrix A satisfies

A~ (g’ é) (1.14)

If X\ is an even integer, we may choose

¢1 (x) = b3 (2), ¢5 = ¢ (2)

()= o) (%) 015

and the desired property of the transition matrix is clear.
If —\ = 2m + 1 is an odd natural number, then we find that ¢F (z) =
(—1)" o (—x) so that by choosing ¢, (x) = ¢3 (), we may conclude that

lim M;&O

T——00 ez2/2|1’|P1

C:

so that

Therefore, the choice ¢ (z) = (;Sj (z) : 7 = 1,2 forms an admissible pair whose
associated transition matrix A is the identity matrix, not satisfying (1.14). In
summary, we conclude that the transition matrices A for operator L satisfy
(1.14) if and only if —X is not a odd natural number.



We note the operator £~ is identical to £T, but with A replaced by —\.
Then it is clear that the associated matrices A satisfy (1.14) if and if +X is not
an odd natural number. Therefore, the operator P(X,Y") is locally solvable if
and only if A is not an odd integer (cf. [CKM, W2]). Similar analysis applied for
general generic second-order operators as the resulting bases can be expressed
by various parabolic cylinder functions.

With analytical justification established for our operators of Hermite type,
let us outline a more general computational procedure to produce admissible
bases. From this we form computer algorithms. Let us review the case n = 2 :
Given a basis of solutions 91 (x), ¥2(z) to Ly = 0 and compute

+ lim ¥;(x)

C = —_—
J,k mﬂiooe»ijzﬂ‘ﬂpj

(resp.). Then, choose [* so that cljft 1 wof CF (resp.) is finite and non-zero and

set ¢ (z) = Yy (x) (resp.).
Then, in order produce ¢2i (x) with the desired asymptotic growth, let m®*
be the indices not equal I*; here, m* = 3—[* (resp.). Then, we set C’; =t

m*E .2
C:I:
¢2i(x) = ¢1(x) — O—id),ni (2) (1.16)
2
def cf

= /(/)li (LU) - Ciitd]mi (l’)
2

We see that there are invertible matrices A¥ so that

o\ (U
(61) =4+ (32)

(resp.) so that we obtain an admissible pair of bases with

L\ _ g—(a4+)-1 ¢T>
(6r) = e (G
whose transition matrix is thus given by A = A~ (A")~!. With the matrix
A in hand, we check the element [A]2 1. As we see above, if [A]o1 # 0, then
A~ (2 é).lf[A]z,lzo,thenAN -
to already known in the literature [CK, CKM, MR].

In the course of providing computational schemes for the above procedure
to perform on Mathematica, we will have opportunities to develop student-
centered documents and exercises serving as introduction to global analysis.
Moreover, we will have been able to train assistants to examine many examples
in preparation for higher-order operators.

. Results here can be compared

10



Higher-Order cases n > 2

As we work on higher-order operators P(X,Y") of degree n, we are faced with
classifying larger transition matrices A to determine solvability. Supposing that
we can construct these matrices with sufficient accuracy, we can follow a method
[W2] (see Proposition 3.4 therein) to determine their equivalences classes in the
sense of Proposition 1.5. Indeed, we see that one can reduce any invertible
matrix to one of the form I, by way of certain elementary row operations.
Moreover, since the proof is argued by induction, it is clear that we can develop
a procedure that is easy for the user to follow - perhaps an automated procedure.
With such software developed we will try a large number of operators and report
our discoveries of locally and non-locally solvable operators as we have project
members various subclasses of our operators. We anticipate a large number of
results to be documented in an encyclopedic text made available for publication.
Such results are expected between the eighteenth and twenty-forth months of
the project.

For an operator of the form £ we can produce a basis of ker £ by solving

(symbolically or numerically) for functions ¢;(x) : j = 1,...,n such that the
Wronskian is non-zero. For instance we may specify that
Ly =0, yM0)=0:0<k<n—1&k#j, vUD(0) =1 (1.17)
Here, the Wronskian W = W (41, ..., ¢, )(x) satisfies
;ﬁl(fﬂ) ( ) dwnm
W = : (1.18)
d:n (@) () d:w = n(2)

Here W (0) = 1 and, hence, by Abel’s formula we see that (cf. [W2, C])

W(z) = W(0)e = /2 = ¢=1=°/2
for v def Z?:l v;. Here we may estimate cf ; numerically by estimating the
various ratios
£ = V()

kg — e—vjx2/2|x|pj

for large negative and positive x. Thus, we guarantee the (theoretical) existence
of a bases suitable for the entire real line. We will compare numerical solutions
with those derived from alternate schemes. For instance, we will investigate
solutions with initial conditions according to asymptotic behavior.

d* 2
ksbi( ) = ()t e 2l

at large zp > 0 (say). We will see if there are any advantages to this scheme in

terms of cost of computation or in error propagation as we compute transition
matrices A.

11



With at least one basis at hand, we do, however, expect errors to propagate
in the numerical results over large intervals starting at x = 0. These errors will
effect our calculations of the transition matrices A. We do nonetheless expect
that results are tractable in identifying solvability for a large class of operators
P(X,Y). For instance, in the case n = 2 we expect to find the value of [A]s1
to high precision which can be estimated. We can therefore be certain of local
solvability once [A]21 is known to be non-zero. In cases were [A]2; is small,
we expect to analyze and report some measure of certainty of our calculations
in determining non-solvability. For higher n we know that a certain number of
linear operations on the rows of A are involved. Hence, we can likewise be certain
of our conclusions for many such cases where P(X,Y) is locally solvable - or
otherwise at least still be able to give a measure of accuracy of our conclusions.

Further Implementation: Calculation of Solution
and Exploration of Related Operators

Let us take a glimpse into possible several avenues our research program can
take beyond determination of (C°°) local solvability. Once an operator P(X,Y)
is determined to be the proposed research take the methods of [W2] to construct
solutions to LH = f. We have that H is a finite sum of smooth functions, each
of which are partial Fourier transforms of functions which can be written in the
form

> ot [ G ete g i (1.19)

Here, u = /1 + £//n for Fourier variables n,{ > 0; the function g is bounded
and continuous (and decaying sufficiently rapidly as £, — oo) which depends
on f and the neighborhood of solution; the functions ¢; form and admissible
basis of kerL; the function W;(x) is given by a constant times the determinant

j—th column

o 0 bn
Lo 0 o e,
o : S

Lo . 1 R

(formed by replacing the jth column of W (x) by the transpose of (0,...,0,1));
and, the limits ¢; are finite or infinite, depending on the behavior of W;(z)/W (z)
for large . This formula results by following the variation of parameters formula
[CL]) where the ¢; are determined by the associated transition matrix A. What’s
more, the solution H can be constructed on any bounded neighborhood of R3.

Differential equation solvers such as those used in Mathematica do not pro-
vide solutions for some n = 2 cases of Lf = g with analytic ¢g although L may
not be C>)-locally solvable (eg. —X?+Y? = sin(x +y) yields no solution when
using the 'DSolve’ package of Mathematica). With computational algorithm

12



arising from our project, such published work will add to the public literature
of numerical solutions to differential equations. Related publications will serve
as tutorials in performing computations using the general method of variations
of parameters to be accessible to students and laypeople interested in ordinary
differential equations. Moreover, we expect to refine our results as we inves-
tigate other modes of solvability - other that C'°°—local solvability. We note
that even for the operator L= Ly, the equation Lf = g is solvable for some
smooth g. Likewise some Lf = g may likely have solution though L = P(X,Y)
is not locally solvable. We will make available to users of our software some
guidance, where feasible, to classes of admissible functions g and an estimate
on the smoothness of solution f.

With methods similar to those described above (1.19), we will explore related
differential, extending out study to those operators of [W1, W3]. We will study
operators of the form L = P(X,Y) where X = 0, and Y = 9,+2™ 0, for integers
m > 3. Here, via partial Fourier transforms we are lead to representations of
the form

L = P(i0y,z — z™) (1.20)

for a large parameter z > 0. Here, we would study transition matrices A = A(z)
to determine solvability of L as in [W3], according to the behavior of A(z) for
large z. Here, the implementation of software will benefit the general study of
local solvability so that with automation available, the project will serve to
allow a detailed study of the infinite families of matrices A(z) as to estimate
their asymptotic behavior as z — co. Such investigation is as yet prohibitively
cumbersome without any technological aids.

Other advances in the general theory of local solvability should result in
explorations related to aforementioned work. These involve operators of the
form

L=P(X,Y)+Q(X,Y) (1.21)

where is generic of order n > 2 with @) as some polynomial of order strictly less
than n (n > 2). In treating these operators, the team will study representation
with amount to ordinary differential operators of the form

n—1

=0

for certain homogeneous polynomials ();, with complex, constant coeflicients,
of order j and with real parameters u,e. Cases for n = 2 will be compared to
those of [MPR] whose techniques-based on Laplace transforms - do not apply for
higher-order cases n > 3. Software development will aid the investigations, likely
leading to publishable research in real analysis/partial differential equations as
test cases can be readily studied.

In summary the proposed project is expected to advance current investiga-
tions of a broad class of operators. It is likely that subclasses of such operators
may be discovered according to their solvability as parameters of the operators
can be varied as the analysis proceeds with relative ease. Aside from theoretical

13



investigations, the project will also produce benefits in applied/computational
mathematics, and in mathematics education. The project will result in doc-
umentation of large subclasses of operators according their (non-) solvability,
within computational certainty of Mathematica software. Indeed, MAST will
produce encyclopedic compilations reporting on operators according to their
solvability or non-solvability. The project also will provide, with some automa-
tion, means of solutions not yet available in Mathematica. Finally, the project
will produce educational tools and tutorials, introducing asymptotic methods
of ODEs and techniques of Fourier analysis to laypersons and to students of
mathematics. Local solvability will show to be broadly accessible.
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