Local Solvability on *H*₁: Non-homogeneous Operators

Christopher Winfield

Madison Area Science and Technology www.madscitech.org/cgs/ASM10mintalk.pdf

American Mathematical Society National Meeting, Jan. 7, 2011

・ロト ・聞 ト ・ ヨト ・ ヨト

Outline

- Previous Work
- 2 New Results
 - The Setup
 - Some Results
 - Basic Ideas for Proofs
 - Non-Solvability
- 3 More Results Plus Remarks
 - A Few More Results
 - Final Remarks
 - Some References

Motivation

New Results More Results Plus Remarks How it All Started Previous Work

Outline

- **Motivation** How it All Started Previous Work The Setup ۲ Non-Solvability A Few More Results Final Remarks
 - Some References

< 🗇 🕨

How it All Started Previous Work

Origins

• Discovery (1957): The Lewy operator

$$L_{\text{Lewy}} = \partial_{\mathbf{x}} + \mathbf{i}(\partial_{\mathbf{y}} + \mathbf{x}\partial_{\mathbf{w}})$$

- An operator *L* is called (\mathcal{C}^{∞}) locally solvable at \vec{x}_0 $(\in \mathbb{R}^n)$ if for every smooth $(\mathcal{C}^{\infty}(\mathbb{R}^n))$ function *f* there is a function (or distribution) *u* so that Lu = f on some neighborhood of $\vec{x_0}$.
- We'll say simply that *L* is locally solvable if it is locally solvable at every *x*₀ in \mathbb{R}^n .
- Vector fields $X = \partial_x$, $Y = \partial_y + x \partial_z$ are LEFT INVARIANT on \mathbb{H}_1 . (i.e. $\mathcal{T}_{\vec{x}} \circ V = V \circ \mathcal{T}_{\vec{x}}$ for group translation $\mathcal{T}_{\vec{x}}$ where V = X or Y.)

How it All Started Previous Work

Origins

• Discovery (1957): The Lewy operator

$$L_{Lewy} = \partial_{\mathbf{x}} + \mathbf{i}(\partial_{\mathbf{y}} + \mathbf{x}\partial_{\mathbf{w}})$$

- An operator *L* is called $(\mathcal{C}^{\infty}$ -) locally solvable at \vec{x}_0 $(\in \mathbb{R}^n)$ if for every smooth $(\mathcal{C}^{\infty}(\mathbb{R}^n))$ function *f* there is a function (or distribution) *u* so that Lu = f on some neighborhood of \vec{x}_0 .
- We'll say simply that *L* is locally solvable if it is locally solvable at every *x*₀ in \mathbb{R}^n .
- Vector fields $X = \partial_x$, $Y = \partial_y + x \partial_z$ are LEFT INVARIANT on \mathbb{H}_1 . (i.e. $\mathcal{T}_{\vec{x}} \circ V = V \circ \mathcal{T}_{\vec{x}}$ for group translation $\mathcal{T}_{\vec{x}}$ where V = X or Y.)

How it All Started Previous Work

Origins

• Discovery (1957): The Lewy operator

$$L_{Lewy} = \partial_{\mathbf{x}} + \mathbf{i}(\partial_{\mathbf{y}} + \mathbf{x}\partial_{\mathbf{w}})$$

- An operator *L* is called $(\mathcal{C}^{\infty}$ -) locally solvable at \vec{x}_0 $(\in \mathbb{R}^n)$ if for every smooth $(\mathcal{C}^{\infty}(\mathbb{R}^n))$ function *f* there is a function (or distribution) *u* so that Lu = f on some neighborhood of \vec{x}_0 .
- We'll say simply that *L* is locally solvable if it is locally solvable at every x_0 in \mathbb{R}^n .
- Vector fields $X = \partial_x$, $Y = \partial_y + x\partial_z$ are LEFT INVARIANT on \mathbb{H}_1 . (i.e. $\mathcal{T}_{\vec{x}} \circ V = V \circ \mathcal{T}_{\vec{x}}$ for group translation $\mathcal{T}_{\vec{x}}$ where V = X or Y.)

How it All Started Previous Work

Origins

• Discovery (1957): The Lewy operator

$$L_{Lewy} = \partial_{\mathbf{x}} + \mathbf{i}(\partial_{\mathbf{y}} + \mathbf{x}\partial_{\mathbf{w}})$$

- An operator *L* is called $(\mathcal{C}^{\infty}$ -) locally solvable at \vec{x}_0 $(\in \mathbb{R}^n)$ if for every smooth $(\mathcal{C}^{\infty}(\mathbb{R}^n))$ function *f* there is a function (or distribution) *u* so that Lu = f on some neighborhood of \vec{x}_0 .
- We'll say simply that *L* is locally solvable if it is locally solvable at every x_0 in \mathbb{R}^n .
- Vector fields $X = \partial_x$, $Y = \partial_y + x\partial_z$ are LEFT INVARIANT on \mathbb{H}_1 . (i.e. $\mathcal{T}_{\vec{x}} \circ V = V \circ \mathcal{T}_{\vec{x}}$ for group translation $\mathcal{T}_{\vec{x}}$ where V = X or Y.)

How it All Started Previous Work

Outline

- **Motivation** How it All Started Previous Work The Setup ۲ Non-Solvability A Few More Results
 - Final Remarks
 - Some References

< 🗇 🕨

How it All Started Previous Work

Homogeneous operators.

Consider operators in the form

$$L = (-iX)^n + lower order in X$$

where the replacement $X \rightarrow z$, $Y \rightarrow 1$ yields a polynomial (in *z*) with distinct roots.

More precisely, we set L = P(X, Y), in operator notation, where

• *P* is a *HOMOGENEOUS* polynomial with complex coefficients in the non-commuting variables *X*, *Y*.

• In the complex variable z,

$$p(z) \stackrel{\text{def}}{=} P(iz, 1) = z^n + lower order$$

with $n \ge 2$

p(z) ^{def} = P(iz, 1) has distinct roots γ_j : j = 1,..., n.
 We'll call such polynomials GENERIC.

Author, Christopher Winfield Local Solvability on H₁ www.madscitech.org

Homogeneous operators.

Consider operators in the form

$$L = (-iX)^n + lower order in X$$

where the replacement $X \rightarrow z$, $Y \rightarrow 1$ yields a polynomial (in *z*) with distinct roots.

More precisely, we set L = P(X, Y), in operator notation, where

- *P* is a *HOMOGENEOUS* polynomial with complex coefficients in the non-commuting variables *X*, *Y*.
- In the complex variable *z*,

$$p(z) \stackrel{\text{def}}{=} P(iz, 1) = z^n + lower order$$

with $n \ge 2$

p(z) ^{def} = P(iz, 1) has distinct roots γ_j : j = 1,..., n.
 We'll call such polynomials GENERIC.

Homogeneous operators.

Consider operators in the form

$$L = (-iX)^n + lower order in X$$

where the replacement $X \rightarrow z$, $Y \rightarrow 1$ yields a polynomial (in *z*) with distinct roots.

More precisely, we set L = P(X, Y), in operator notation, where

- *P* is a *HOMOGENEOUS* polynomial with complex coefficients in the non-commuting variables *X*, *Y*.
- In the complex variable *z*,

$$p(z) \stackrel{\text{def}}{=} P(iz, 1) = z^n + lower order$$

with $n \ge 2$

p(z) ^{def} = P(iz, 1) has distinct roots γ_j : j = 1,..., n.
 We'll call such polynomials GENERIC.

How it All Started Previous Work

Homogeneous operators.

Consider operators in the form

$$L = (-iX)^n + lower order in X$$

where the replacement $X \rightarrow z$, $Y \rightarrow 1$ yields a polynomial (in *z*) with distinct roots.

More precisely, we set L = P(X, Y), in operator notation, where

- *P* is a *HOMOGENEOUS* polynomial with complex coefficients in the non-commuting variables *X*, *Y*.
- In the complex variable *z*,

$$p(z) \stackrel{\text{def}}{=} P(iz, 1) = z^n + lower order$$

with $n \ge 2$

- $p(z) \stackrel{\text{def}}{=} P(iz, 1)$ has distinct roots $\gamma_j : j = 1, ..., n$.

How it All Started Previous Work

Those Results.

Theorem

A generic operator L of order $n \ge 2$ is locally solvable if and only if the corresponding ordinary differential equations

 $P(\pm i\partial_x, x)^* y = 0$

have no Schwartz-class solutions other than $y \equiv 0$.

('*' denotes adjoint.) We can determine local solvability by characteristic roots

Corollary

A generic operator L is locally solvable if all of its characteristic roots γ_i are purely imaginary.

How it All Started Previous Work

Those Results.

Theorem

A generic operator L of order $n \ge 2$ is locally solvable if and only if the corresponding ordinary differential equations

 $P(\pm i\partial_x, x)^* y = 0$

have no Schwartz-class solutions other than $y \equiv 0$.

('*' denotes adjoint.) We can determine local solvability by characteristic roots

Corollary

A generic operator L is locally solvable if all of its characteristic roots γ_j are purely imaginary.

How it All Started Previous Work

Examples

• For distinct real α_j : j = 1, 2, ..., n the operators

$$L = \prod_{j=1}^{n} (X - \alpha_j Y)$$

is locally solvable.

Operators of the form

$$L = X^2 + Y^2 + i\lambda[X, Y]$$

for constant λ is locally solvable if neither of $\pm\lambda$ is an odd integer.

 Indeed, L above is not locally solvable if either of ±λ is an odd integer. The result follows according to the eigenvalues of the Hermite ordinary differential operator

$$\partial_x^2 - x^2$$

How it All Started Previous Work

Examples

• For distinct real α_j : j = 1, 2, ..., n the operators

$$L = \prod_{j=1}^{n} (X - \alpha_j Y)$$

is locally solvable.

Operators of the form

$$L = X^2 + Y^2 + i\lambda[X, Y]$$

for constant λ is locally solvable if neither of $\pm\lambda$ is an odd integer.

 Indeed, L above is not locally solvable if either of ±λ is an odd integer. The result follows according to the eigenvalues of the Hermite ordinary differential operator

$$\partial_x^2 - x^2$$

How it All Started Previous Work

Examples

• For distinct real $\alpha_j : j = 1, 2, ..., n$ the operators

$$L = \prod_{j=1}^{n} (X - \alpha_j Y)$$

is locally solvable.

Operators of the form

$$L = X^2 + Y^2 + i\lambda[X, Y]$$

for constant λ is locally solvable if neither of $\pm\lambda$ is an odd integer.

 Indeed, L above is not locally solvable if either of ±λ is an odd integer. The result follows according to the eigenvalues of the Hermite ordinary differential operator

$$\partial_x^2 - x^2$$

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Outline

- Final Remarks
- Some References

< 回 > < 回 > < 回 >

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Setup.

We now consider operators of the form

$$P(X, Y) = P_n(X, Y) + Q(X, Y)$$

where P_n is generic (of order $n \ge 2$) and Q is of order strictly less than *n*. Let us set

$$\mathcal{L}^{\pm}_{\mu} \stackrel{\text{def}}{=} \mu^{-n} \mathcal{P}(\pm i \mu \partial_{u}, \mu \mathbf{U})$$

$$\mathcal{L}_{\infty}^{\pm}=P_{n}(\pm i\partial_{u},u)$$

respectively. Think of the all but the highest order terms in X, Y vanishing as $\mu \to \infty$.

< ロ > < 同 > < 回 > < 回 > < □ > <

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Setup.

We now consider operators of the form

$$P(X, Y) = P_n(X, Y) + Q(X, Y)$$

where P_n is generic (of order $n \ge 2$) and Q is of order strictly less than *n*. Let us set

$$\mathcal{L}^{\pm}_{\mu} \stackrel{\mathrm{def}}{=} \mu^{-n} \mathcal{P}(\pm i \mu \partial_{u}, \mu u)$$

$$\mathcal{L}_{\infty}^{\pm} = P_n(\pm i\partial_u, u)$$

respectively. Think of the all but the highest order terms in X, Y vanishing as $\mu \to \infty$.

< ロ > < 同 > < 回 > < 回 > < □ > <

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Setup.

We now consider operators of the form

$$P(X, Y) = P_n(X, Y) + Q(X, Y)$$

where P_n is generic (of order $n \ge 2$) and Q is of order strictly less than *n*. Let us set

$$\mathcal{L}^{\pm}_{\mu} \stackrel{\text{def}}{=} \mu^{-n} \mathcal{P}(\pm i \mu \partial_u, \mu u)$$

$$\mathcal{L}_{\infty}^{\pm}=P_{n}(\pm i\partial_{u},u)$$

respectively. Think of the all but the highest order terms in *X*, *Y* vanishing as $\mu \rightarrow \infty$.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Outline

- Final Remarks
- Some References

< 回 > < 回 > < 回 >

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Theorem

For the operator L above suppose that the (generic) polynomial P_n has characteristic roots γ_j all with non-zero real parts. Then L is locally solvable if $P_n(X, Y)$ is locally solvable.

From [W1] we have immediately

Corollary

The operator L above is locally solvable if $\ker(\mathcal{L}_{\infty}^{\pm})^* \cap S(\mathbb{R}) = \{0\}$ for both choices of \pm sign.

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Theorem

For the operator L above suppose that the (generic) polynomial P_n has characteristic roots γ_j all with non-zero real parts. Then L is locally solvable if $P_n(X, Y)$ is locally solvable.

From [W1] we have immediately

Corollary

The operator L above is locally solvable if $\ker(\mathcal{L}_{\infty}^{\pm})^* \cap S(\mathbb{R}) = \{0\}$ for both choices of \pm sign.

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Theorem

For the operator L above suppose that the (generic) polynomial P_n has characteristic roots γ_j all with non-zero real parts. Then L is locally solvable if $P_n(X, Y)$ is locally solvable.

From [W1] we have immediately

Corollary

The operator L above is locally solvable if $\ker(\mathcal{L}_{\infty}^{\pm})^* \cap \mathcal{S}(\mathbb{R}) = \{0\}$ for both choices of \pm sign.

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Results on non-solvability we now state are as follows:

Theorem

L is not locally solvable if, for some choice of \pm sign, the set of parameters $\mu \in \mathbb{R}^+$: ker(\mathcal{L}^{\pm}_{μ})* $\bigcap S(\mathbb{R}) \setminus \{0\} \neq \emptyset$ has a limit point in \mathbb{R}^+ .

In other words, *L* is NOT locally solvable if the non-linear eigenvalues of \mathcal{L}^{\pm}_{μ} has an accumulation point for some choice of \pm .

Theorem

L is not locally solvable if the cardinality of either $\{\gamma_j | \text{Re}\gamma_j > 0\}$ or $\{\gamma_j | \text{Re}\gamma_j < 0\}$ is greater than n/2.

< ロ > < 同 > < 回 > < 回 > < □ > <

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Results on non-solvability we now state are as follows:

Theorem

L is not locally solvable if, for some choice of \pm sign, the set of parameters $\mu \in \mathbb{R}^+$: ker(\mathcal{L}^{\pm}_{μ})* $\bigcap S(\mathbb{R}) \setminus \{0\} \neq \emptyset$ has a limit point in \mathbb{R}^+ .

In other words, L is NOT locally solvable if the non-linear eigenvalues of \mathcal{L}^{\pm}_{μ} has an accumulation point for some choice of \pm .

Theorem

L is not locally solvable if the cardinality of either $\{\gamma_j | \text{Re}\gamma_j > 0\}$ or $\{\gamma_j | \text{Re}\gamma_j < 0\}$ is greater than n/2.

< ロ > < 同 > < 回 > < 回 > < □ > <

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Results on non-solvability we now state are as follows:

Theorem

L is not locally solvable if, for some choice of \pm sign, the set of parameters $\mu \in \mathbb{R}^+$: ker(\mathcal{L}^{\pm}_{μ})* $\bigcap S(\mathbb{R}) \setminus \{0\} \neq \emptyset$ has a limit point in \mathbb{R}^+ .

In other words, L is NOT locally solvable if the non-linear eigenvalues of \mathcal{L}^{\pm}_{μ} has an accumulation point for some choice of \pm .

Theorem

L is not locally solvable if the cardinality of either $\{\gamma_j | \text{Re}\gamma_j > 0\}$ or $\{\gamma_j | \text{Re}\gamma_j < 0\}$ is greater than n/2.

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Outline

- Final Remarks
- Some References

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Representation.

$$(Lf)(x, y, w) = \frac{1}{2\pi} \int e^{-i(y\xi + w\eta)} \mathcal{P}(\partial_x, -i(\xi + x\eta))\hat{f}(x, \xi, \eta) d\xi d\eta$$

- Change of variables on P(∂_x, −i(ξ + xη)) result in studying of L[±]_μ = μ⁻ⁿP(∓μ∂_u, μu)
- Our main ODOp: In the + case (say) for some homogeneous P_j of degree j

$$\mathcal{L}_{\mu} = \sum_{j=0}^{n} \frac{1}{\mu^{j}} P_{n-j}(i\partial_{u}, u)$$

• **NOTE the** singularity at $\mu = 0!$

< □ > < 同 >

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Representation.

$$(Lf)(x,y,w) = \frac{1}{2\pi} \int e^{-i(y\xi+w\eta)} \mathcal{P}(\partial_x,-i(\xi+x\eta))\hat{f}(x,\xi,\eta)d\xi d\eta$$

- Change of variables on P(∂_x, −i(ξ + xη)) result in studying of L[±]_μ = μ⁻ⁿP(∓μ∂_u, μu)
- Our main ODOp: In the + case (say) for some homogeneous P_j of degree j

$$\mathcal{L}_{\mu} = \sum_{j=0}^{n} \frac{1}{\mu^{j}} P_{n-j}(i\partial_{u}, u)$$

• **NOTE the** singularity at $\mu = 0!$

< □ > < 同 >

The Setup Some Results Basic Ideas for Proofs Non-Solvability

The Representation.

$$(Lf)(\mathbf{x},\mathbf{y},\mathbf{w}) = \frac{1}{2\pi} \int e^{-i(\mathbf{y}\xi + \mathbf{w}\eta)} \mathcal{P}(\partial_{\mathbf{x}}, -i(\xi + \mathbf{x}\eta)) \hat{f}(\mathbf{x},\xi,\eta) d\xi d\eta$$

- Change of variables on P(∂_x, −i(ξ + xη)) result in studying of L[±]_μ = μ⁻ⁿP(∓μ∂_u, μu)
- Our main ODOp: In the + case (say) for some homogeneous P_j of degree j

$$\mathcal{L}_{\mu} = \sum_{j=0}^{n} \frac{1}{\mu^{j}} P_{n-j}(i\partial_{u}, u)$$

• NOTE the singularity at $\mu = 0!$

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Main Estimates.

There are bases {ψ[±]_k(t, μ)}ⁿ_{k=1} of kerL_μ of functions C[∞](ℝ) as functions of t and holomorphic as functions of Reμ > 0 which for 1 ≤ k ≤ n and 0 ≤ j satisfy

$$\frac{d^j}{d t^j}\psi_k^{\pm}(t,\mu) = (\pm \gamma_k t + \beta_k/\mu)^j e^{\gamma_j t^2/2 \pm \beta_k t/\mu} (1+o(1))$$

as $t
ightarrow \pm \infty$ (resp.)

- The β_j 's depend on the γ_j 's and the coefficients of P_{n-1} .
- Roughly: These estimates can be extended to complex t, on sectors depending on characteristic roots γ_i.
- A key to broad characterization of solvability lies in the study of *transition* matrices $A(\mu)$ where bases $\vec{\psi}^{\pm}$

$$\vec{\psi^+} = A(\mu)\vec{\psi^-}$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Main Estimates.

There are bases {ψ[±]_k(t, μ)}ⁿ_{k=1} of kerL_μ of functions C[∞](ℝ) as functions of t and holomorphic as functions of Reμ > 0 which for 1 ≤ k ≤ n and 0 ≤ j satisfy

$$\frac{d^j}{d t^j} \psi_k^{\pm}(t,\mu) = (\pm \gamma_k t + \beta_k/\mu)^j e^{\gamma_j t^2/2 \pm \beta_k t/\mu} (1 + o(1))$$

as $t
ightarrow \pm \infty$ (resp.)

- The β_j 's depend on the γ_j 's and the coefficients of P_{n-1} .
- Roughly: These estimates can be extended to complex t, on sectors depending on characteristic roots γ_j.
- A key to broad characterization of solvability lies in the study of *transition* matrices $A(\mu)$ where bases $\vec{\psi}^{\pm}$

$$\vec{\psi^+} = A(\mu)\vec{\psi^-}$$

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Main Estimates.

There are bases {ψ[±]_k(t, μ)}ⁿ_{k=1} of kerL_μ of functions C[∞](ℝ) as functions of t and holomorphic as functions of Reμ > 0 which for 1 ≤ k ≤ n and 0 ≤ j satisfy

$$\frac{d^{\prime}}{d t^{j}}\psi_{k}^{\pm}(t,\mu) = (\pm \gamma_{k}t + \beta_{k}/\mu)^{j} e^{\gamma_{j}t^{2}/2\pm\beta_{k}t/\mu} (1 + o(1))$$

as $t
ightarrow \pm \infty$ (resp.)

- The β_j 's depend on the γ_j 's and the coefficients of P_{n-1} .
- Roughly: These estimates can be extended to complex t, on sectors depending on characteristic roots γ_i.
- A key to broad characterization of solvability lies in the study of *transition* matrices $A(\mu)$ where bases $\vec{\psi}^{\pm}$

$$\vec{\psi^+} = A(\mu)\vec{\psi^-}$$

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Main Estimates.

There are bases {ψ[±]_k(t, μ)}ⁿ_{k=1} of kerL_μ of functions C[∞](ℝ) as functions of t and holomorphic as functions of Reμ > 0 which for 1 ≤ k ≤ n and 0 ≤ j satisfy

$$\frac{d^{j}}{d t^{j}}\psi_{k}^{\pm}(t,\mu) = (\pm \gamma_{k}t + \beta_{k}/\mu)^{j} e^{\gamma_{j}t^{2}/2\pm\beta_{k}t/\mu}(1+o(1))$$

as $t
ightarrow \pm \infty$ (resp.)

- The β_j 's depend on the γ_j 's and the coefficients of P_{n-1} .
- Roughly: These estimates can be extended to complex t, on sectors depending on characteristic roots γ_i.
- A key to broad characterization of solvability lies in the study of *transition* matrices $A(\mu)$ where bases $\vec{\psi}^{\pm}$

$$\vec{\psi^+} = \mathbf{A}(\mu)\vec{\psi^-}$$

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Solvability: Divide and Conquer

Solvability is proved by construction (forming a parametrix), by dividing up the the domain of μ to one of large $\mu > 0$ and another of μ on a complex arc away from 0:

- As we bypass the singularity at $\mu = 0$ we apply smooth changes of bases appropriate to various sectors of the complex *t* plane.
- Solutions to L_µy = 0 are manageable for our parametrix since we need only to solve our PDE locally. Our parametrix allows this by applications the famous Theorems of Roche and Cauchy.
- The hypotheses on $P_n(\pm i\partial_x, x)$ render our parametrix manageable for large μ . Again, by locally restricting the solution.

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Solvability: Divide and Conquer

Solvability is proved by construction (forming a parametrix), by dividing up the the domain of μ to one of large $\mu > 0$ and another of μ on a complex arc away from 0:

- As we bypass the singularity at $\mu = 0$ we apply smooth changes of bases appropriate to various sectors of the complex *t* plane.
- Solutions to L_µy = 0 are manageable for our parametrix since we need only to solve our PDE locally. Our parametrix allows this by applications the famous Theorems of Roche and Cauchy.
- The hypotheses on $P_n(\pm i\partial_x, x)$ render our parametrix manageable for large μ . Again, by locally restricting the solution.

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Solvability: Divide and Conquer

Solvability is proved by construction (forming a parametrix), by dividing up the the domain of μ to one of large $\mu > 0$ and another of μ on a complex arc away from 0:

- As we bypass the singularity at $\mu = 0$ we apply smooth changes of bases appropriate to various sectors of the complex *t* plane.
- Solutions to L_µy = 0 are manageable for our parametrix since we need only to solve our PDE locally. Our parametrix allows this by applications the famous Theorems of Roche and Cauchy.
- The hypotheses on $P_n(\pm i\partial_x, x)$ render our parametrix manageable for large μ . Again, by locally restricting the solution.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Solvability: Divide and Conquer

Solvability is proved by construction (forming a parametrix), by dividing up the the domain of μ to one of large $\mu > 0$ and another of μ on a complex arc away from 0:

- As we bypass the singularity at $\mu = 0$ we apply smooth changes of bases appropriate to various sectors of the complex *t* plane.
- Solutions to L_µy = 0 are manageable for our parametrix since we need only to solve our PDE locally. Our parametrix allows this by applications the famous Theorems of Roche and Cauchy.
- The hypotheses on P_n(±i∂_x, x) render our parametrix manageable for large μ. Again, by locally restricting the solution.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

The Setup Some Results Basic Ideas for Proofs Non-Solvability

Outline

- A Few More Results
- Final Remarks
- Some References

< 回 > < 回 > < 回 >

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

 $\int \phi \bar{\Psi} | \leq N ||\phi||_{\mathcal{C}^N} ||L^*\Psi||_{\mathcal{C}^N}$

for every $\phi, \Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$. This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- *P_n(X, Y)* may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in ker*L_μ* which is of class *S*(ℝ) × *C[∞](I)* for μ on an interval *I*.
- The latter condition my depend on the β_j 's which, in turn, depend on the coefficients of P_n and P_{n-1} .

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

$$|\int \phi \bar{\Psi}| \leq N ||\phi||_{\mathcal{C}^N} ||L^*\Psi||_{\mathcal{C}^N}$$

for every ϕ , $\Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$.

This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- *P_n(X, Y)* may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in kerL_μ which is of class S(ℝ) × C[∞](I)
 for μ on an interval I.
- The latter condition my depend on the β_j 's which, in turn, depend on the coefficients of P_n and P_{n-1} .

・ロット (雪) (日) (日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

$$|\int \phi ar{\Psi}| \leq N ||\phi||_{\mathcal{C}^N} ||L^*\Psi||_{\mathcal{C}^N}$$

for every ϕ , $\Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$. This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- P_n(X, Y) may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in kerL_μ which is of class S(ℝ) × C[∞](I)
 for μ on an interval I.
- The latter condition my depend on the β_j 's which, in turn, depend on the coefficients of P_n and P_{n-1} .

(日)

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

$$|\int \phi ar{\Psi}| \leq N ||\phi||_{\mathcal{C}^N} ||L^*\Psi||_{\mathcal{C}^N}$$

for every ϕ , $\Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$. This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- *P_n(X, Y)* may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in ker*L_μ* which is of class *S*(ℝ) × *C[∞](I)* for μ on an interval *I*.
- The latter condition my depend on the β_j 's which, in turn, depend on the coefficients of P_n and P_{n-1} .

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

$$|\int \phi ar{\Psi}| \leq {\sf N} ||\phi||_{{\mathcal C}^{\sf N}} ||L^*\Psi||_{{\mathcal C}^{\sf N}}$$

for every ϕ , $\Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$. This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- *P_n(X, Y)* may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in kerL_μ which is of class S(ℝ) × C[∞](I)
 for μ on an interval I.
- The latter condition my depend on the β_j 's which, in turn, depend on the coefficients of P_n and P_{n-1} .

The Setup Some Results Basic Ideas for Proofs Non-Solvability

A necessary condition for solvability of PDOp *L* (Hörmander) is a follows: $\forall \epsilon > 0, \exists N > 0$ such that

$$|\int \phi ar{\Psi}| \leq N ||\phi||_{\mathcal{C}^N} ||L^*\Psi||_{\mathcal{C}^N}$$

for every ϕ , $\Psi \in C^{\infty}(\mathbb{R}^3)$ supported in $|(x, y, w)| < \epsilon$. This condition is violated when

- *P_n(X, Y)* is not locally solvable and *A*(μ_j) converges to a limit *A*(∞) sufficiently rapidly for some sequence μ_j → ∞.
- *P_n(X, Y)* may or may not be locally solvable but there is a non-trivial Ψ(x, μ) in ker*L_μ* which is of class *S*(ℝ) × *C[∞](I)* for μ on an interval *I*.
- The latter condition my depend on the β_j's which, in turn, depend on the coefficients of P_n and P_{n-1}.

A Few More Results Final Remarks Some References

Outline

- How it All Started Previous Work The Setup ۲ Non-Solvability More Results Plus Remarks 3
 - A Few More Results
 - Final Remarks
 - Some References

< 回 > < 回 > < 回 >

A Few More Results Final Remarks Some References

Second-Order Plus Lower-Order

 $\mathcal{B} \stackrel{\text{def}}{=} -X^2 - ia_1 YX + a_2 Y^2 - i\alpha[X, Y] - ib_1 X + b_2 Y + c$

where a_k, b_k, α, c complex numbers with $a_1^2 \neq 4a_2$. The operator $L \stackrel{\text{def}}{=} \mathcal{B}^*$ is not locally solvable if one the cases hold:

Reγ₁ and Reγ₂ are non-zero and have the same sign;
Reγ₁ = 0 > Reγ₂ and

 $\operatorname{Im}(\gamma_1 - \gamma_2) \operatorname{Im}(b_1 + \gamma_1 b_2) > \operatorname{Re}(\gamma_2) \operatorname{Re}(b_1 + \gamma_1 b_2); \text{ or }$

• $\operatorname{Re}_{\gamma_2} = 0 < \operatorname{Re}_{\gamma_1}$ and

A Few More Results Final Remarks Some References

Second-Order Plus Lower-Order

 $\mathcal{B} \stackrel{\text{def}}{=} -X^2 - ia_1 YX + a_2 Y^2 - i\alpha[X, Y] - ib_1 X + b_2 Y + c$

where a_k, b_k, α, c complex numbers with $a_1^2 \neq 4a_2$.

The operator $L \stackrel{\text{def}}{=} \mathcal{B}^*$ is not locally solvable if one the cases hold:

Reγ₁ and Reγ₂ are non-zero and have the same sign;
 Reγ₁ = 0 > Reγ₂ and

 $\operatorname{Im}(\gamma_1 - \gamma_2) \operatorname{Im}(b_1 + \gamma_1 b_2) > \operatorname{Re}(\gamma_2) \operatorname{Re}(b_1 + \gamma_1 b_2); \text{ or }$

• $\operatorname{Re}_{\gamma_2} = 0 < \operatorname{Re}_{\gamma_1}$ and

A Few More Results Final Remarks Some References

Second-Order Plus Lower-Order

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 - ia_1 YX + a_2 Y^2 - i\alpha[X, Y] - ib_1 X + b_2 Y + c$$

where a_k, b_k, α, c complex numbers with $a_1^2 \neq 4a_2$.

The operator $L \stackrel{\text{def}}{=} \mathcal{B}^*$ is not locally solvable if one the cases hold:

• $\operatorname{Re}_{\gamma_1}$ and $\operatorname{Re}_{\gamma_2}$ are non-zero and have the same sign;

•
$$\operatorname{Re}_{\gamma_1} = 0 > \operatorname{Re}_{\gamma_2}$$
 and

 $\operatorname{Im}(\gamma_1 - \gamma_2) \operatorname{Im}(b_1 + \gamma_1 b_2) > \operatorname{Re}(\gamma_2) \operatorname{Re}(b_1 + \gamma_1 b_2); \text{ or }$

• $\operatorname{Re}_{\gamma_2} = 0 < \operatorname{Re}_{\gamma_1}$ and

A Few More Results Final Remarks Some References

Second-Order Plus Lower-Order

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 - ia_1 YX + a_2 Y^2 - i\alpha[X, Y] - ib_1 X + b_2 Y + c$$

where a_k, b_k, α, c complex numbers with $a_1^2 \neq 4a_2$.

The operator $L \stackrel{\text{def}}{=} \mathcal{B}^*$ is not locally solvable if one the cases hold:

• $\operatorname{Re}_{\gamma_1}$ and $\operatorname{Re}_{\gamma_2}$ are non-zero and have the same sign;

•
$$\operatorname{Re}_{\gamma_1} = 0 > \operatorname{Re}_{\gamma_2}$$
 and

 $\operatorname{Im}(\gamma_1 - \gamma_2) \operatorname{Im}(b_1 + \gamma_1 b_2) > \operatorname{Re}(\gamma_2) \operatorname{Re}(b_1 + \gamma_1 b_2); \text{ or }$

• $\operatorname{Re}_{\gamma_2} = 0 < \operatorname{Re}_{\gamma_1}$ and

A Few More Results Final Remarks Some References

Case

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 + 2i\lambda YX - i\alpha [X, Y] - ib_1 X + b_2 Y + c$$

 $a_2 = \alpha = 0$
 $a_1 = -2\lambda$

for some real $\lambda \neq 0$.

- The characteristic roots are 1 and 2λ .
- The associated operator \mathcal{B} is locally solvable when $b_1 = b_2 = c = 0$.
- However, the operator L is not locally solvable for any b₂ and c when Reb₁ > 0, although the associated P₂(X, Y) is locally solvable.

< ロ > < 同 > < 回 > < 回 > < □ > <

A Few More Results Final Remarks Some References

Case

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 + 2i\lambda YX - i\alpha [X, Y] - ib_1 X + b_2 Y + c$$

 $a_2 = \alpha = 0$
 $a_1 = -2\lambda$

for some real $\lambda \neq 0$.

- The characteristic roots are 1 and 2λ .
- The associated operator B is locally solvable when $b_1 = b_2 = c = 0$.
- However, the operator L is not locally solvable for any b₂ and c when Reb₁ > 0, although the associated P₂(X, Y) is locally solvable.

< ロ > < 同 > < 回 > < 回 > < □ > <

A Few More Results Final Remarks Some References

Case

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 + 2i\lambda YX - i\alpha [X, Y] - ib_1 X + b_2 Y + c$$
$$a_2 = \alpha = 0$$
$$a_1 = -2\lambda$$

for some real $\lambda \neq 0$.

- The characteristic roots are 1 and 2λ .
- The associated operator \mathcal{B} is locally solvable when $b_1 = b_2 = c = 0$.
- However, the operator L is not locally solvable for any b₂ and c when Reb₁ > 0, although the associated P₂(X, Y) is locally solvable.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

A Few More Results Final Remarks Some References

Case

$$\mathcal{B} \stackrel{\text{def}}{=} -X^2 + 2i\lambda YX - i\alpha [X, Y] - ib_1 X + b_2 Y + c$$
$$a_2 = \alpha = 0$$
$$a_1 = -2\lambda$$

for some real $\lambda \neq 0$.

- The characteristic roots are 1 and 2λ .
- The associated operator \mathcal{B} is locally solvable when $b_1 = b_2 = c = 0$.
- However, the operator *L* is not locally solvable for any b_2 and *c* when $\operatorname{Re}b_1 > 0$, although the associated $P_2(X, Y)$ is locally solvable.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

A Few More Results Final Remarks Some References

Generalized Laplacians

Consider for real $-1 < \lambda < 1$ the operator

$$(\lambda^2 - 1)L_{\lambda,\alpha} = (1 - \lambda^2)X^2 + Y^2 + i\lambda(XY + YX) + i\alpha[X, Y]$$

- $L_{\lambda,\alpha}$ is not locally solvable when $\alpha \in \mathbb{H}^+$ is odd;
- yet, for any constant $c \neq 0$, $L_{\lambda,\alpha} + c$ is locally solvable $\forall \lambda, \alpha$.

These results are consistent with a result of E. Stein [S] and those of Müller, Peloso, and Ricci for operators [MPR]

< ロ > < 同 > < 回 > < 回 > < □ > <

A Few More Results Final Remarks Some References

Generalized Laplacians

Consider for real $-1 < \lambda < 1$ the operator

$$(\lambda^2 - 1)L_{\lambda,\alpha} = (1 - \lambda^2)X^2 + Y^2 + i\lambda(XY + YX) + i\alpha[X, Y]$$

- $L_{\lambda,\alpha}$ is not locally solvable when $\alpha \in \mathbb{H}^+$ is odd;
- yet, for any constant $c \neq 0$, $L_{\lambda,\alpha} + c$ is locally solvable $\forall \lambda, \alpha$.

These results are consistent with a result of E. Stein [S] and those of Müller, Peloso, and Ricci for operators [MPR]

< ロ > < 同 > < 回 > < 回 > < □ > <

A Few More Results Final Remarks Some References

Generalized Laplacians

Consider for real $-1 < \lambda < 1$ the operator

$$(\lambda^2 - 1)L_{\lambda,\alpha} = (1 - \lambda^2)X^2 + Y^2 + i\lambda(XY + YX) + i\alpha[X, Y]$$

- $L_{\lambda,\alpha}$ is not locally solvable when $\alpha \in \mathbb{H}^+$ is odd;
- yet, for any constant $c \neq 0$, $L_{\lambda,\alpha} + c$ is locally solvable $\forall \lambda, \alpha$.

These results are consistent with a result of E. Stein [S] and those of Müller, Peloso, and Ricci for operators [MPR]

A Few More Results Final Remarks Some References

Outline

- How it All Started Previous Work The Setup ۲ Non-Solvability More Results Plus Remarks 3 A Few More Results
 - A Few More Resul
 - Final Remarks
 - Some References

< 回 > < 回 > < 回 >

A Few More Results Final Remarks Some References

Final Remarks

- For a large subclass of our operators L = P(X, Y) the solvability of the highest order part $P_n(X, Y)$ determine solvability of *L*.
- However, we have examples where L is locally solvable although P_n(X, Y) is not.
- Mand, vice versa.....
- If we pass the hypotheses on P_n(±i∂_u, u) to conditions on A[±](µ) as µ → +∞ : We produce conditions equivalent to local solvability. (Elaboration here will make the talk too long.)

A Few More Results Final Remarks Some References

Final Remarks

- For a large subclass of our operators L = P(X, Y) the solvability of the highest order part P_n(X, Y) determine solvability of L.
- However, we have examples where L is locally solvable although P_n(X, Y) is not.
- Mand, vice versa.....
- If we pass the hypotheses on P_n(±i∂_u, u) to conditions on A[±](µ) as µ → +∞ : We produce conditions equivalent to local solvability. (Elaboration here will make the talk too long.)

< ロ > < 同 > < 回 > < 回 > < □ > <

A Few More Results Final Remarks Some References

Final Remarks

- For a large subclass of our operators L = P(X, Y) the solvability of the highest order part P_n(X, Y) determine solvability of L.
- However, we have examples where L is locally solvable although P_n(X, Y) is not.
-And, vice versa......
- If we pass the hypotheses on P_n(±i∂_u, u) to conditions on A[±](µ) as µ → +∞ : We produce conditions equivalent to local solvability. (Elaboration here will make the talk too long.)

A Few More Results Final Remarks Some References

Final Remarks

- For a large subclass of our operators L = P(X, Y) the solvability of the highest order part P_n(X, Y) determine solvability of L.
- However, we have examples where L is locally solvable although P_n(X, Y) is not.
-And, vice versa......
- If we pass the hypotheses on P_n(±i∂_u, u) to conditions on A[±](µ) as µ → +∞ : We produce conditions equivalent to local solvability. (Elaboration here will make the talk too long.)

- Author is indebted to F.M. Christ for his direction of the author's Dissertation (comprising the work in [W1]) and in his work [C], upon which present asymptotic methods are based.
- Author is indebted to D. Müller for his encouragement and discussions on local solvability and that farewell beer in Kiel.
- THANKS FOR YOUR TIME.

ヘロア 人間 アメヨア 人間 アー

- Author is indebted to F.M. Christ for his direction of the author's Dissertation (comprising the work in [W1]) and in his work [C], upon which present asymptotic methods are based.
- Author is indebted to D. Müller for his encouragement and discussions on local solvability and that farewell beer in Kiel.
- THANKS FOR YOUR TIME.

< ロ > < 同 > < 回 > < 回 > < □ > <

- Author is indebted to F.M. Christ for his direction of the author's Dissertation (comprising the work in [W1]) and in his work [C], upon which present asymptotic methods are based.
- Author is indebted to D. Müller for his encouragement and discussions on local solvability and that farewell beer in Kiel.
- THANKS FOR YOUR TIME.

A Few More Results Final Remarks Some References

Outline

- Motivation

 How it All Started
 Previous Work

 New Results

 The Setup
 Some Results
 Basic Ideas for Proofs
 Non-Solvability

 More Results Plus Remarks
 - A Few More Results
 - Final Remarks
 - Some References

< 回 > < 回 > < 回 >

A Few More Results Final Remarks Some References

Some References I

E. M. Stein,

An example on the Heisenberg group related to the Lewy operator,

Invent. math., 69, (1982): 209-216.

C. Winfield,

Local Solvability on the Heisenberg Group. *Jour. Geo. Anal.*, 11: 344-362, 2001.

Local Solvability on \mathbb{H}_1 : Non-homogeneous Operators. (submitted).

(日)

A Few More Results Final Remarks Some References

Some References II

F.M. Christ,

Analytic Hypoellipticity, Representations of Nilpotent Groups, and a Nonlinear Eigenvalue Problem, *Duke Math. J.* 72 (1993): 595-638.

D. Müller, M. Peloso and F. Ricci

On local solvability for complex coefficient differential operators on the Heisenberg group,

J. Reine Angew Math 513 (1999): 181-234.

See www.madscitech.org/cgs/ASM10mintalk.pdf

ヘロン 人間と 人間と 人間と